
Figure 4. Sample Characteristics of Treated and Matched Untreated Patients

Figure 2. Disease Progression of Treated Patient and Untreated Patient 2 
                after Matching

Figure 1. Disease Progression of Treated Patient and Untreated Patients  
               before Matching
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Comparable Samples of Treated and Treatment-Naïve 
Patients with Progressive Conditions

 MOTIVATION
The effects of medical interventions on progressive conditions are ideally evaluated 
through randomized control trials (RCTs), in which patients are randomly assigned 
to a treatment or control group such that the two groups have comparable patient 
characteristics at study initiation.
                      

However, it is often difficult, or even unethical, to conduct an RCT in order to 
evaluate the treatment of progressive conditions.
                      

This leads to evaluations of novel treatments that are limited to using observational data.
                      

As a result, regulatory bodies sometimes approve treatments in the absence of 
RCT-generated evidence:

• Hatswell et al. (2016) report that “Over the period [1999-2014], 76 unique 
   indications were granted without RCT results (44 by the EMA and 60 by the 
  FDA), demonstrating that a substantial number of treatments reach the   
   market without undergoing an RCT.”1

                      

However, there are well-known limitations and biases associated with treatment 
effect estimation from observational data, highlighting the need for robust methods 
for estimating unbiased treatment effects.
                      

We propose a method, Longitudinal Matching, that can be flexibly applied to 
observational data in order to approximate an RCT by matching treated patients 
with treatment-naïve patients at a similar stage of disease progression.
                      

Unlike existing methods, Longitudinal Matching can be applied to data in which 
treated and treatment-naïve patients are observed at arbitrary times for different 
lengths of time.2

 EXAMPLE
The following is a simple example of how the Longitudinal Matching algorithm 
matches each treated patient with a single  untreated patient-history by choosing 
between eligible untreated patient-histories.
• There is one treated patient who is observed from age 15 onwards, represented  
   by the orange line that starts at the circle in Figure 1. Suppose that this is also 
   the  time at which they initiate treatment.
• There are two untreated patients who are observed from birth until the end of  
   data availability, represented by the blue lines in Figure 1. Crosses indicate the 
   end of follow-up for all patients.
• Patients are matched on age and (integer-valued) stage of disease progression.
• Longitudinal matching compares the two untreated patients, at regular intervals,
   to the treated patient and attempts to find a point in their trajectories at which 
   their characteristics most closely resemble those of the treated patient at the 
   start of observation.
• Untreated patient 2 is chosen by the algorithm. Their data are left-truncated 
   at age 12, and they are matched to the treated patient at treatment initiation 
   (see Figure 2). The treated patient can now be compared to a counter-factual 
   trajectory represented by untreated patient 2 from age 12 onwards.  

 METHOD: THE LONGITUDINAL MATCHING ALGORITHM
Suppose that observational data is available on both treated and untreated patients, 
and that the following conditions hold:
• Unconfoundedness — potential outcomes are independent of treatment 
   assignment, conditional on covariates
• Monotonic progression — patients can only transition to more advanced stages 
   of disease severity/impairment
• Treated patient data is left-truncated — it is available after treatment initiation, 
   but possibly not before.

                      

Denote treated patients by i є {1,…,N}, and treatment-naïve (untreated) patients 
by j є {1,…,M}.
                      

Let the set of observations for patient i be {x1
i,…,xT

i}, where t є {1,…,T} denotes the 
time at which observations are recorded.
                      

xt
i  can be a multidimensional vector with time-invariant entries (such as gender, state 

of residence, etc.) as well as time-varying entries, such as age, measures of disease 
progression, and mortality status.
                      

For each treated patient, i, let ti* denote the time at which they received the 
treatment (without loss of generality, let ti* = 1 for all i).
                      

The objective of the algorithm is to match each patient in the treatment group (at 
the time they receive treatment) to k treatment-naïve patients at the point in time 
when they are most similar.
                      

Similarity is measured by the Mahalanobis distance between patients at a specific 
point in time across a group of chosen covariates.
                      

Supposing we match on all available covariates, the Mahalanobis distance between 
treated patient i at time ti* = 1 and untreated patient j at time t (patient-history jt), 
m(i1, jt), is as follows:

m(i1, jt) = (x1
i – xt

j)T Σ–1(x1
i – xt

j)

Σ–1 represents the inverse of the variance-covariance matrix of matching variables in 
the appropriate sample.

 METHOD (CONT’D)
                      

When estimating the average treatment effect (ATE), the combined covariance 
matrix is used in the Mahalanobis distance metric, while the untreated group’s 
covariance matrix is used instead when estimating the average treatment effect on 
the treated (ATT).3
                      

The combined variance-covariance matrix is estimated as follows:

ΣATE = (    
N – 1   ) ΣT + (1 – (    

N – 1    )) ΣC

ΣATT = ΣC

                      

In these covariance matrix expressions, ΣT is the covariance matrix of the sample of 
treated patients, and ΣC is the analogous matrix for the untreated patient-histories.
                      

For each treated patient, i, the algorithm chooses the k untreated patient histories 
from the eligible set that minimize the distance m(i1, jt). Denote the chosen set of 
patient-histories by B(i;k) (for best k matches):

B(i;k) = {jt : jt є argmin(k)w{m(i1,w)}}
 
In the above expression, argmin(k) is an operator that finds the k smallest entries of 
Mahalanobis distance between treated patient i and untreated patient-histories, w.
                      

The resulting matching pairs each treated patient, i, with k untreated patient-histories. 
Let M denote such a matching:

M = {B(i;k)}N
i=1

                      

When restrictions are placed on the number of times untreated patient-histories can 
be matched, the order in which treated patients are considered matters. Matchings 
can be expressed as functions of that order.
                      

Let I = {1,…,N} denote the set of treated patients. Let P(I) denote a random 
permutation of I, p2 (I) denote a random permutation of P(I), and so on.
                      

Let S(M) denote the sum of Mahalanobis distances between each treated patient, i, 
and the k untreated patient-histories in B(i;k) defined by matching M.

S(M) = Σ
N

i=1 
 (ΣjєB(i;k)єM

 m(i, j))
 

                      

The “best” matching, M*, is the one that minimizes S(M) among a list of matchings 
generated by random permutations of I.

M* = argmin{S(M(I)),S(M(P(I))),…,S(M(pR (I))}
                      

The number of random permutations considered, R, is user-specified. The larger this 
number the better the matching M* will be, but the longer it will take for the 
algorithm to complete its run.

 APPLICATION
This section describes an application of Longitudinal Matching to estimate the 
treatment e�ect associated with metreleptin among patients with lipodystrophy.
 
Lipodystrophy is a progressive, heterogeneous disorder characterized by either a 
lack of or an abnormal distribution of adipose tissue.4,5

                      

The condition can be characterized by adipose tissue loss to either specific areas 
(partial - PL) or the entire body (generalized - GL).6
                      

Metreleptin is a drug that provides leptin replacement and is indicated as an adjunct 
to diet to treat the complications of leptin deficiency in patients with 
lipodystrophy.6,7

                      

Data on 103 treated patients were obtained from a longitudinal, medical chart review 
studying the e�ects of metreleptin.8
                      

Data on 230 untreated patients from 5 treatment centers were obtained from 
a retrospective, non-interventional, observational, closed cohort, longitudinal study 
assessing characteristics of lipodystrophy.8
                      

Treated and untreated patient cohorts were not directly comparable due to 
di�erences in study design and patient characteristics.
• Untreated patients were part of a natural history study, in which they were 
   observed from birth.
• Treated patients were selected into the clinical trial at a certain point in their 
   life if they met disease severity criteria warranting treatment. Data collection 
   began upon enrollment into the study.

                      

Figure 3 summarizes patient characteristics of the full set of treated and untreated 
patient cohorts, before matching.
• Treated patient characteristics are measured at baseline immediately before 
   treatment initiation.
• Untreated patient characteristics are measured at the end of observation, 
   when they are most impaired. 

 APPLICATION (CONT’D)
                      

Treated patients are significantly farther along in disease progression than untreated 
patients, likely a result of trial inclusion restrictions.
                      

Figure 4 summarizes patient characteristics of the full set of treated patients and 
the matched set of untreated patient-histories after implementing Longitudinal 
Matching on gender, GL/PL status, age at start of observation, the number of organ 
abnormalities, and an indicator of elevated HbA1c levels.
                      

Untreated patient characteristics are, in general, no longer significantly di�erent 
from the treated patients’.

 SIMULATION
Longitudinal Matching was applied to data generated by simulating patient disease 
progression and mortality.
                      

All patients begin in state 1 and face a Markov transition probability matrix governing 
their evolution through states 2,3,4,5 and death.

                      

Later states correspond to later stages of disease progression, hence the probability 
of death is higher as the state increases.
                      

We assume that treatment only a�ects mortality, and is simulated by a proportional 
decrease in all transition probabilities to death (for example, when the treatment e�ect 
is 0.5, the transition probability from state 4 to death is 0.0004 instead of 0.0008).
                      

The entire trajectory of 2000 patients is simulated 100 times for up to 18250 periods. 
Treatment is then applied to half the patients at randomly chosen times in their 
histories, before the end of observation.
• Patient trajectories are re-simulated at these randomly chosen times using  
   new (treatment-specific) mortality probabilities.

                      

Untreated patients are matched on age and stage of disease progression (state). 
Longitudinal Matching was able to generate samples of almost perfectly balanced 
patients. For example, the mean index age across the 100 simulations with a 
treatment e�ect of 1 were 3.643 and 3.641, while the mean index states were 0.555 
and 0.555 for treated and matched untreated patients, respectively. Note that 
matches generated from real world data are significantly less balanced.
                      

The following table shows the mean and standard deviation (displayed in square 
brackets) of treatment e�ects across 100 simulations recovered by simple and full 
Cox proportional hazards models estimated on matched data (columns 3 and 4), 
and unmatched data (columns 5 and 6).

• The simple Cox model estimates the e�ect of treatment on mortality, while the 
   full Cox model also controls for age and stage of progression at the index dates. 

                      
Longitudinal Matching improved the estimation accuracy compared to a Cox model 
using unmatched data, recovering the true treatment e�ect.

 CONCLUSION
Longitudinal Matching is a method that can be flexibly applied to rebalance 
longitudinal data across treated and untreated groups that are observed at 
arbitrary times. 
                      

It is particularly well-suited for the study of treatments for progressive 
conditions in the absence of an RCT.
                      

An application to lipodystrophy estimates a protective treatment e�ect from  
data in which patients only qualified for the trial after meeting disease severity 
criteria exacerbating selection bias.
                      

The validity of the method was verified through simulations of patient data from 
which Longitudinal Matching recovered the true treatment e�ects.
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Figure 3. Sample Characteristics of Treated and All Untreated Patients
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