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Abstract

This paper examines how the evolution of learning affects technology adoption. We use a
sequential adoption model that accounts for differences between forward-looking
adopters, who consider future impacts of their learning, and myopic adopters, who only
consider past learning. We apply the analysis to three panels of U.S. soybean farmers
representing different stages of the genetically modified (GM) seed technology diffusion
path. We show that uncertainty is considerably reduced over time due to increased
learning efficiency. Our results indicate that a forward-looking model fits the early
adopters and early majority stages better, while both models perform equally well in the
laggard stage.

JEL classification: D83, Q31, Q33, Q16

Keywords: diffusion path, genetically modified soybean seeds uncertainty, learning,
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Introduction

New technology diffusion and adoption are two sides of the same coin—with “diffusion”
referring to the rate at which a new technology spreads among all potential users and
“adoption” describing an individual user’s decision to try or not to experiment with new
technology. Researchers in the fields of sociology, anthropology, education, social
networks, and communications have extensively studied the technology diffusion path
[1]. The S-shaped path — broken down into “early adopters”, “early majority”, “late
majority”, and “laggard” stages — is commonly observed in many cases and is a well-
known result of these studies. Following [1-2], “early adopters” and “early majority” are
defined as the stages where the number of new adopters increases but with different
trends: faster and slowly, respectively; and “late majority” and “laggards” are the stages
where the number of new adopter decreases, also with the different trend: slowly and
faster, respectively [1-5]. Economists, on the other hand, have studied adoption
decisions—developing models that identify, examine, and characterize the various factors
that may influence a user’s technology adoption decisions [6]. In this literature, binary
choice models, wherein users choose to adopt a new technology or choose not to adopt
[7-10], are distinguished from sequential adoption models, wherein users initially and
partially adopt a technology, and then adjust adoption practices in later years [11,12].
Some researchers model myopic adoption behavior with immediate utility maximization
only [13-15], while others model forward-looking behavior where adopters maximize

utility over a planning horizon [16-18].



While most papers on adoption allow for time -varying covariates that may
change over time, there is limited study documenting explicitly whether and how
adoption decisions change in different stages of the technology diffusion path. Changes
in adoption decisions may be particularly relevant when new technology adoption is
associated with changes in user knowledge and learning after initial uncertainty about the
new technology’s functionality. This uncertainty is often seen when potential users are
heterogeneous and/or the technology will be used in heterogeneous situations. For
example, in the case of agricultural technology such as seeds or pesticides, farmer
knowledge and resources can vary widely while their crop plots may differ in soil quality
and vulnerability to potential infestations. Farmers may adjust adoption decisions based
on learning about profitability by observing neighbors’ experiences or from their own
past experiences, which could differ by diffusion stage.

This study aims to understand how learning from adoption decisions evolves in
different stages of the diffusion path. It may provide important guidance to researchers on
how and when to choose the appropriate static or dynamic model in analyzing adoption
decisions. For example, if there are not many learning dynamics at a certain stage of the
adoption path, then the simple static model would be appropriate without loss of insight
into potential adopters’ learning. Moreover, the information on how farmers’ learning
evolves is also helpful for policymakers and marketing companies in designing effective
strategies promoting new technology adoption.

In particular, we examine U.S. farmers’ adoption of new genetically modified

(GM) soybean seed technology from its introduction in 1996 to 2009. As Fig 1 suggests,



GM soybean seed technology exhibits a completed diffusion path: from 2 percent
adoption in 1996 to 75 percent in 2001, then 95 percent adoption in 2009 where it

currently remains.
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Fig 1. Adoption rate of GM soybean seeds in the U.S.: Year-level comparison of adoption rates of GM
soybean seeds between 1996 to 2014. The data used is farm-level soybean seed purchase information
collected by dmrkynetec, St. Louis, MO (dmrk).

To understand GM soybean seed adoption decisions, our work joins a growing
literature that examines behavioral explanations for sequential adoption of new
technologies under uncertainty and learning [11,19,20-22]. Following previous studies,
we hypothesize two sequential models with Bayesian learning in which farmers initially
update believes about GM seed profitability after observing noisy signals from their own
and neighbors’ experience. We follow [22] to specify and estimate (i) a “myopic” model
in which farmers adopt technology at a rate that provides the highest current expected
utility, and (ii) a “forward-looking” model in which farmers recognize that current
technology choices will affect their future information sets.

However, our work extends the modeling and analysis presented in [22]. By

looking at farmers’ adoption decisions in different stages of the diffusion path, we obtain



insights about the evolution of learning and uncertainty. We apply our analysis to three
distinct panels of soybean farmers in the U.S. for three time periods: 1996 — 2001, 2001 —
2006, and 2006 — 2009. We did not include the 2010 — 2014 time period, because the
market reached saturation starting in 2010. Following [3,4]’s definition of different
diffusion stages, we label the 1996 — 2001 period the “early majority” stage, the 2001 —
2006 period the “late majority” stage, and the 2006 — 2009 period the “laggard” stage.
Concretely, we fit a polynomial specification to the adoption path and determine the stage
categories by examining the sign of the first and second-order of the rate of changes in
adoption increments. These periods correspond to adoption rates changing from zero
adoption to 75%, then from 75% to 95%, and finally stable at around 95%.

Our results suggest that uncertainty about profit reduces significantly after
farmers experiment with the new seed technology for a number of years. This decrease is
attributed to less noisy signals from their own and neighbors’ experiences, which, in turn,
is associated with an increase in learning efficiency. We also find that the “forward-
looking” sequential model outperforms the “myopic” model in generating the observed
adoption path for the 1996-2001 and 2001-2006 farmer panels, while both models
perform equally well for the 2006-2009 farmer panel. This may be because diffusion is
close to saturation beginning in 2006, thus little uncertainty remains about the new

technology’s performance or attributes.



Methods

Learning models

In this section, we describe the “myopic” and “forward-looking” sequential learning
models following [22] in the context of GM soybean seed technology adoption. Detailed
derivations can be found in [22].

Consider farmer i, who decides in each time period ¢ = 1,...,7 which seed
technologies to plant on her farmland of size 4,. She has two choices: an existing
conventional technology (old) and/or a newly developed GM technology (new). Let G,

denote the amount of farmland planted with the new technology by farmer i at time t.

Farmer i chooses the optimal adoption rate of the new technology {¢, = %} to

r=t,t+l,..,T
maximize the expected present utility value over the planning horizon. The value

function of farmer i at time ¢, V() 1s defined as:

V,=Maxy, 6" Elu.(a,)], ()
where § > 0 is the discount factor and y_is the utility of farmer i at time 7.

The Bellman equation is:

V;z (Iit) = Max{”n (a

it?

I 1©)+SEWV, . | I}, for £=0,...,T -1, )

where 7, is the information set of farmer i at time t, and @1s a set representing the

parameter space to be defined in the model. Equation (2) indicates that the value of



choosing a specific adoption rate at time t equals the sum between the immediate utility

of choosing ¢ (i.e. u,(e,,l, |®)) and the additional expected value of choosing ¢ of
having the augmented information set 7, (M)(i.e. OEV, 1y Uiy | I,)D- This specification

provides an information gathering incentive. For example, a farmer may choose to
partially adopt the new technology, even if doing so provides a lower expected utility
than with zero adoption, as long as this decision leads to a sufficient increase in the value
of information she will have in the following time period. Therefore, we define farmers
with immediate expected utility maximizers (where § = 0) the “myopic” ones, and those
with expected utility maximizers over a planning horizon (where § > 0) the “forward-

looking” ones.

We assume that the distribution functions of profits for both seed technologies are
unknown to farmers. Following [22], we construct farmer i’s expected utility at time # as
a function of the mean and variance of the total profits from planting the two types of

seeds: 7, = T+ T where the subscript “g” denotes the GM seed type, and the

subscript “c” denotes the conventional seed type. Farmer learning about GM seed
profitability, and hence the adoption process for both myopic and forward-looking
farmers, can be developed accordingly (refer to the appendix for details).

The current payoff at time t for farmer i is:

u, = E|:7Z-ll‘:| _%piaz (ﬂil) = uil (ait’lit | ®)’ (3)

it

where



Elx, =@ +n,a —%ngcalf)Aﬂ, and

ig it

o’ (z,) = 4; (e (9, + o) +(1-a,) o).
The derivation of the mean ( E[r,]) and variance of the total profits ( o’ ( 7,)) can be
found in the appendix, or in [22]. As defined earlier, ¢ is farmer i’s adoption rate of the
GM seed technology in her farmland with total acreage 4 at time 7. We use p, to

measure farmer i’s degree of risk aversion, which is assumed to be inversely related to

the acreage 4, . The parameter 7, represents the mean profit of planting conventional
seed per plot, which is common to all farmers, while nigis the upper bound of the plot
level profit difference between planting GM seed and conventional seed. Additionally,
1, measures the rate of dissipation of such profit difference along with adoption. Factors
affecting the variance of the total profits include adoption rate ¢, total acreage A, the

current belief of GM profit variance (pig[, the profit variance of conventional seeds Giit’

and the time invariant GM profit variance o

Equation (3) suggests that farmer’s utility function is determined by the choice
variable (adoption rate ¢, ) and the information set 7, , given the remaining parameter
space @. In our model, the information set 7, consists of factors that affect current
expected utilities and/or the probability distribution of the future expected utilities (i.e.
(pfgl, o, and A,)- The parameter space set © include parameters used to define the

variance of conventional seed profitability, the risk aversion measurement, the mean

profits of planting conventional seeds and the mean profit differences between



conventional seeds and GM seeds, the time invariant GM profit variance ¢ (which can
be obtained by learning from own experience), a parameter measuring the variance in

learning of GM profitability from neighbors &2, and the white noise added to the

variance of the conventional seed profitability o.

Data

For our empirical analysis, we use U.S. farm-level soybean seed purchase data collected
by dmrkynetec, St. Louis, MO (dmrk). Data are obtained from annual surveys on a
stratified sample of U.S. soybean growers since the introduction of GM soybean seed in
the U.S. in 1996. It includes information on seed type, quantity, and prices, and on farm
size for 26,314 farmers between 1996 and 2014. To capture the evolution of uncertainty
and learning, we examine farmer’s adoption decisions in three distinct stages along the
diffusion path: early majority (1996 —2001), late majority (2001 — 2006), and laggard
(2006 —2009). Note that we do not examine 2010 — 2014 as the adoption rate seems to
have reached saturation limit by 2010 (Fig 1). We chose farmers who farmed soybeans in
each year of the time periods of each of our three study panels. We further eliminate
farmers with total soybean acreage changing dramatically over the sample period to
remove those with frequent switching behavior between soybean and other crops. We do
this by constructing a farm acreage variation measure by dividing the standard deviation
of the farm acreage by its mean. We dropped those farmers with greater than 40 percent
variation. We also dropped Crop Reporting Districts (CRD) (as defined by the United

States Department of Agriculture (USDA)) in which the number of surveyed farmers fell
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below the 10 percent quantile (the threshold number of farmers is 8§ in 1996 — 2001, 11
in 2001 —2006, and 8 in 2006 — 2009) to ensure statistical significance in calculating
CRD-level market characteristics. Our panel data contain 377 early majority adopters,
190 late majority adopters, and 473 laggard adopters. Fig 2 shows the average farmer
adoption rate of GM soybean seeds from our three study panels (1996-2009), from the
whole dmrk data (1996-2009), and USDA data (2000 to 2009, based on data availability)
[26]. All adoption data follow a similar pattern, suggesting that farmers in our samples do

not differ from those in the population at large in terms of adoption behavior over time.
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Fig 2: Average adoption rate of GM soybean seeds in the U.S.: sample vs. population. Comparison of
DMRK population (khaki long line) vs. farmers in panels (red dotted line) vs. USDA population (blue
dashed line) adoption rate of genetically modified soybean seeds in the U.S. From left to right, the first
vertical solid grey line indicates the end of the “early majority” stage (1996 —2001) and the second line
indicates the end of the “late majority” stage (2001 — 2006).

We believe learning from neighbors is valuable if neighbors face similar agro-
climatic conditions. Therefore, we use CRD as a proxy for local market. This aligns with
common practice in the empirical literature, in which the neighborhood effect is based on

geographical proximity [11,23,24]. We construct the CRD adoption rate using the dmrk
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population data. Thus, while A;; is measured by individual farmer’s total soybean acreage
in year t, A_;; is calculated by the average soybean acreage for other farmers in the CRD
in that year. We also include both linear and quadratic forms of latitude and longitude of
the center of the county where each farmer is located. This captures spatial heterogeneity
in farming systems and agro-climatic conditions (e.g. temperature, rainfall volume, and
daylight length).

Table 1 shows summary statistics of the variables for each panel of farmers. The
average soybean acreage for farmers in each panel is notably larger than that of their
neighbors. It seems likely that DMRK oversamples big farms, and that big farms are
more likely to stay in the panel than small ones. Yet Fig 2 shows that there may not be
much attrition bias for our study purpose. Descriptive statistics also suggest that panel
farmers and their neighbors pay similar prices for conventional and GM seeds. Also, seed
prices increased considerably between 1996-2001 and 2006-2009. The average price
premium for GM seeds relative to conventional also increased from around $8.5 in 1996-
2001, to about $13 in 2006-2009; yet, price difference between conventional and GM
stays at around 85 percent. Latitude and longitude variables show that farmers in the

three panels are located in the U. S. Midwest.

Table 1. Variable description and summary statistics.

Variabl Describtion 1996-2001 2001-2006 2006-2009
tabte eseriptio Mean SD Mean SD Mean SD
o Farmer i’s adoption rate at time ¢ 0.41 0.45 0.84 0.34 0.96 0.19

Ojp_q Farmer i’s adoption rate at time #-1 0.34 0.42 0.82 0.35 0.96 0.19
ot Farmer i’s neighbors’ adoption rate ~ 0.43 0.29 0.86 0.11 0.95 0.1
at time ¢

Farmer i’s neighbors’ adoption rate ~ 0.37 0.27 0.84 0.11 0.96 0.1

O_jr—1 .
' at time ¢-1
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A; Farmer i’s total soybean acreages 258 255 305 310 398 398

A, Farmer i’s neighbors’ total soybean 95 39 97 44 118 94
acreage

PiM GM seed price paid by farmer i at 19.71  4.06  23.78  3.73 31.64 599
time ¢ ($/50 1b. bag)

peM GM seed price paid by farmer i’s  19.53 3.57 23.59 2.92 31.54 5.34
neighbors at time ¢ ($/50 Ib. bag)

pgomv Conventional seed price paid by 11.37  4.03 12.69 435 18.09  4.68
farmer i at time ¢ ($/50 Ib. bag)

Conventional seed price paid by 10.61 2.82 12.31 4.26 18.08 4.68
farmer i’s neighbors at time ¢ ($/50
peom Ib. bag)
Lat Latitude of the farm 41.05 233 4133 235 41.15 2.8
Lon Longitude of the farm 89.71 505 91.08 462 90.81 4.99

Description of variables and summary statistics (mean and standard deviation (SD)) of variables used in the
analysis for “early majority” (1996-2001), “late majority” (2001-2006), and “laggard” (2006-2009) samples
of farmers.

Estimation

In the empirical application, we apply the structural models discussed in the Methods-
Learning Models section to each panel of farmers described in Methods-Data section. For
each model, we use the Nelder-Mead simplex method to minimize the simulated
generalized method of moments (GMM) objective function. More precisely, we search
for the set of parameters that minimize a weighted distance between the optimal
(predicted) adoption path and the observed adoption path (see [22] for details). The

instruments used to facilitate the estimation are presented in the next section.

The “myopic” model
Myopic farmers choose the adoption rate that gives the highest current period expected

utility. They maximize the value function defined in equation (1), with discount

factor set to 6 = 0 and utility function as specified in equation (3):
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Max u;, (a Iit | ®) = E[”n] _%pigz (ﬂ-n)

it?
2 2 2 2 2 2 2
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The first order condition gives:

77ig + Aipialil (4)
2 2 25
Moe +Aipi '((pigz +0, +0; )

ct

a; (]it |1©)=

where @ is the parameter space as defined before; and the second-order condition holds.
To compute the predicted adopted path for each farmer in each panel following

equation (4) we need to update the Bayesian beliefs on the variance of GM seed mean
profitability ( (pfgt) after each time period. Because the actual adoption rate in the first year
of each panel (1996, 2001, 2006) is known (noting that that observations form the first
year of each time period sample are used as a benchmark only), we can obtain the

perceived GM variance for the first period ( (/’; ,) by solving the inverse function of

a (1, ]®) for t=0. We then update > for all the following years according to the
it it wlgt

Bayesian rule in equation (A2) in the appendix.

The “forward-looking” model

Forward-looking farmers choose the adoption rate that maximizes the expected present
value of utility over a planning horizon. They perceive that their current choices affect
their information sets, and this perception creates an incentive to experiment to learn
about the technology. The optimization problem follows the value function defined in

equation (1), with discount factor § > 0 and utility function defined in equation (3):
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A/[aax {u, (o, 1, |®)+5E[I/i(t+l)(]i(t+l) | )]}

To compute the predicted adoption path, we make the following assumptions:

The transition probabilities: We rewrite 4, and 4 as 4and 4 because we focus on
farmers with relatively stable farm size over time. Thus, the information set can be

reduced to /. = {a. 1 (t_l)’gpl;,o'iit, A, A_}- Following [11] we write the transition

rules for all these variables in Markovian form (see [22], section 4.2.1 for details).

The value function of the last period: Data suggest that toward the end of 2001 the
change in adoption rate decreased in slope and flattened after 2006 (see Figl). As such,
we assume that in the last period of each sample, sequential learning reaches steady state,

Le. E(V,(1,,))=EW,(I,)fort = 6 inthe 1996-2001 and 2001-2006 panels, and for t =

4in the 2006-2009 panels.
The prior for the first period Bayesian beliefs: The relationship between Bayesian beliefs

and farmers’ adoption rates is no longer a one-to-one correspondence as in the “myopic”

model; therefore, we cannot obtain first period priors, (pizg ,» from the first year’s actual

adoption rates. To overcome this problem we use beliefs of each farmer in year 1996,
2001, and 2006 in the myopic case as reference values in the forward-looking case. We
add a parameter b to all these myopic beliefs to account for the potential bias introduced
by the assumption. For example, the perceived variance of GM seed mean profitability in

year 1997 for farmer i in panel 1996-2001 follows the Bayesian rule:

1 — (5)

2 —
Pigr997 = G, »
O,

2
Dig1996+D

2 2, 2
p o +0;
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The same rule is applied for year 2001 in panel 2001-2006 and year 2006 in panel 2006-

2009.

Results

In estimation of the “forward-looking” model we chose the discount factor at § =0.96.

In addition to the discount factor § and the additional bias parameter b, there are another

14 parameters to be estimated as listed in Table 2. These 14 parameters are shared by the

“myopic” model. The initial values for the “myopic” model for each panel of farmers

follow [22] (see Table 2). We use the estimated parameters in the “myopic” model as

starting values for the “forward-looking” model.

Table 2. Initial values for parameters of the “myopic” model.

Parameter Definition Initial value
Nig Constant term of GM mean profit 1.00

Ngc Decreasing rate of GM mean profit with adoption 0.50

Yo Constant term for Conv variance 5.00

al GM profit variance 1.00

sz Learning variance from neighbors 10.00

Bo Risk averse 1.00

By Farm size effect on risk averse 0

A Parameter of AR1 process 0.20

o2 Disturbance of AR1 process 0.24

Y1 Linear term for Conventional variance 1.00

clig: Latitude effect on mean profit -0.19
€214tz Second-order effect of latitude 0.08E-02
C3ion Longitude effect on mean profit 0.25
c41on2 Second-order effect of longitude -0.03E-02
b Adjustment on Bayesian beliefs on GM variance 0

The initial parameter values for the “myopic” model for each panel of farmers: “early majority” (1996-

2001), “late majority” (2001-2006), and “laggard” stage (2006-2009).

16



We choose 17 instruments to estimate GMM: a constant vector 1, total soybean

acreage of farmer i and his neighbors ( 4,, 4 ) plus the square terms, previous year

adoption rate ( ¢, 1y O ) and the square terms, farm characteristics X (latitude and

~ie-1)
longitude of each county center where farms are located and the square terms). Although
not explicitly included in our model, pricing also affects adoption decisions. As such, we
add conventional and GM seed prices paid by farmer i and his neighbors (computed as
the average price in a given CRD).

Parameter estimates and standard errors for both “myopic” and “forward-
looking” models are presented in Table 3. Our results suggest that the “forward-looking”
model predicts a different adoption scenario than the “myopic” model for the 1996-2001
panel of farmers. Differences in predictions between the two models significantly
decrease for the 2001-2006 panel. For the 2006-2009 panel the predictions are very
similar. One possible explanation is that, even if farmers are “forward-looking,” the value
of the information gathering process declines. As farmers experiment with the technology
their expectations for new leaning may also decrease.

Table 3. Estimation results for the “myopic” and “forward-looking” models.

Early Majority Late Majority Laggard
Parameter (1996-2001) (2001-2006) (2006-2009)
“Myopic” “Forward- “Myopic” “Forward- “Myopic” “Forward-

looking” looking” looking”

Nig 1.82% 2.04™ .51 1.73" 0.56™" 0.71
(0.01) (0.22) (0.40) (0.19) (0.02) (1.07)

Nge 0.42™ 0.42 0.57"* 0.61 0.57"* 0.24
(0.01) (0.50) (0.15) (0.406) (0.06) (0.24)
Yo 3.15™ 1.42% 6.09 3.60"" 5.02 431
(0.01e-2) (0.26) (11.42) (0.54) (74.71) (0.98)

a; 0.83™" 0.82" 0.34 0.25™ 0.03 0.03
(0.03) (0.04) (1.23) (0.10) (0.43) (0.02)
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a§ 31.74" 59.57 18.41 41.61™ 35.79 96.04
(15.07) (39.59) (49.52) (5.63) (515.75) (78.17)
Bo 1.19" 1.08"" 1.40 1.30" 1.09 2.57
(0.06e-1) (0.25) (4.39) (0.12) (14.14) (4.05)
By -0.84™ -0.90"*" -0.13 -0.14™" 0.05 -0.16
(0.00) (0.04) (0.93) (0.03) (1.19) (0.14)
A 0.21 0.23"* 0.20 0.25"" 0.23 0.29
(0.70) (0.01) (13.49) (0.05) (34.99) (0.71)
0?2 0.46 0.52 0.32 0.30" 0.40 0.37
(0.52) (0.32) (27.77) (0.17) (46.51) (3.36)
Y1 1.95 1.81° 0.87 1.01 0.53 1.55
(2.26) (0.57) (143.80) (3.20) (108.97) (8.03)
it 0.05"" 0.05" -0.18 -0.13 -0.11 -0.33
(0.01e-1) (0.02) (1.04) (0.33) (0.18) (0.40)
C€214t2 0.05e-2""" 0.06e-2 0.01e-1 0.01e-1 0.09e-2 -0.01e-1
(0.01e-2) (0.05e-1) (0.10) (0.02¢-1) (0.07e-1) (0.01e-1)
C3ion 0.53"*" 0.53 0.28 0.32 0.48"" 0.17
(0.02e-1) (1.63) (2.10) 0.89 (0.09¢-1) (0.13)
c4ion2 -0.01e-2 -0.01e-2 -0.04e-2 -0.04e-2 -0.05e-2 0.22
(0.00) (0.03) (0.71) (0.04¢-2) (0.13) (0.28)
b 0.55"" 0.18"" 0.10
(0.17) (0.01) (0.13)
Mean 2.485 0.177 0.185 0.049 0.012 0.011
Square
Error

Parameter estimates and standard errors (numbers in parenthesis) for the “myopic” and “forward-looking”
models for each panel of farmers: “early majority” (1996-2001), “late majority” (2001-2006), and
“laggard” (2006-2009).

Average squared root prediction errors for each particular year and each model (myopic.

vs. forward-looking) are presented in Fig 3. In the following we present in more detail

our findings for each panel of farmers.
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Fig 3. Mean squared root prediction errors for the “myopic” and “forward-looking” models. Year-

by-year comparison of predictions in the “myopic” vs. “forward-looking” models across the three adoption

stages: “early majority” (1996-2001, 2001-2006, 2006-2009).

Model fit

For the “early majority” (1996-2001) and the “late majority” (2001-2006), results in
Table 3 indicate that the mean square errors from the “myopic” model are larger (and
more so for the early majority) than from the “forward-looking” model, suggesting that
both early majority and late majority behave in the forward-looking way. Using the
average root squared prediction error for each particular year, Fig 3 indicates that the
“forward-looking” model predicts more accurately in each year from 1996 to 2001. On
average, the actual adoption rate is 40.15% and the predicted myopic and forward-
looking adoption rates are 48.84% and 41.81%, respectively. The “myopic” model
predicts higher adoption rates in the first 6 years of experimenting with the new
technology, suggesting that the myopic model may ignore the potential cost associated

with adoption, thus lead to over-adoption.
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However, along with learning in the very early stage of technology diffusion,
farmers tend to shift from considering the future cost of adoption to incorporating future
value of adoption in the second stage of diffusion. Thus, for the “late majority”, the
myopic model and forward-looking adoption-rate projections move closer. The actual
mean adoption rate is 83.63% and the predicted myopic and forward-looking adoption
rates are 87.12% and 85.78%, respectively.

The difference disappeared completely in the laggard stage (2006 — 2009). Table
3 shows that both the “myopic” and “forward-looking” models fit the data equally well.
The mean square errors of the two models are close to each other. This convergence may
result from a completed learning process (farmers fully understand the quality or
attributes of the new GM seed) as the new technology diffusion has reached saturation.
The actual mean adoption rate is 96.90%, and this compares with the rate predicted by
the “myopic” model of 96.5%, and by the “forward-looking” model of 95.75%.

The parameter b (Table 3) accounts for the difference in the Bayesian belief
towards profit variance of GM seeds between myopic and forward-looking farmers. The
parameter’s estimated value is positive and statistically significant for the “early
majority” and “late majority” but not statistically significant for the “laggard” stage. This
result suggests that the uncertainty about profitability of the new technology plays an
important role in the first two stages along the diffusion path, yet with a declining

magnitude.
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Self-learning versus learning from neighbors

Learning efficiencies, from own and neighbors’ experience, demonstrate different
patterns along the diffusion path. We follow [11,22] to define a farmer’s own-learning
efficiency from planting GM seeds on plot K as py = Uig, and the learning efficiency

from his neighbor experience as p,, = %
ot of
For the “early majority” stage (1996-2001), Table 3 shows that the parameter o2
is positive and statistically significant, while the parameter o—; is not significant. These

results indicate noise in learning from own experience but no additional learning noise
from neighbor experience. Learning efficiencies from a farmer’s own experience and

from his neighbors are about the same for the early majority ( p, = p, =1.21).
For the “late majority” stage (2001-2006), however, the estimated parameters o2

and agare both positive and statistically significant. Noise occurring in learning from

neighbors is much louder than noise in self-learning. Consequently, the learning

efficiency from a farmer’s own experience is much greater than that from neighbors’
experiences ( p, =4vs. p =0.02).

For the “laggard” stage (2006-2009), the estimated parameters for 62 and a@f are
not statistically significant. Consequently, there is perfect learning efficiency ( p, — oo
and p — o). As we argued earlier, there might be nothing new to learn about the

technology when diffusion is saturated.
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Comparing learning efficiency patterns along the three stages on the diffusion
path, it seems that farmers are cautious in the very early stage of the technology diffusion
path and try to learn as much as possible from all possible sources, either own
experiences or neighbors’ experiences. When knowledge is accumulated, farmers tend to
count more on own experiences than on neighbors’ experiences. And when adoption
reaches its saturation, learning seems to be complete from both sources. Note that [22]
estimated soybean farmers’ adoption from 2001 to 2004, which is part of our so-defined
“late majority” stage. They also found that farmers have higher learning efficiency from
own experience than from neighbors’ experiences. Our analysis provides a more

complete picture of the evolution of learning along the diffusion path.

Mean profit

The estimated parameter 1, represents the upper bound of the profit difference between
conventional and GM technologies. It is positive, suggesting potential benefits of GM
technology, yet with a decreasing magnitude moving along the diffusion path. And it is
not statistically significant for the laggard stage. The 1, parameter is not statistically
significant for all three stages on the diffusion path, implying that the marginal profit
from adopting GM seeds does not change when farmers allocate more acreage to GM

seeds. The net benefits from adopting GM seeds, ( My~ %ngc) decrease along the diffusion

path and approach zero at the end stage. It seems that when adoption increases, farmers

successfully allocate lands so that those suitable for GM seeds and those suitable for the
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conventional seeds are planted with the corresponding appropriate technologies. The

estimated parameters related to farm location ( cl,» €2, €3, 5 c4,, ) suggest that GM

lon

technology may have advantage over conventional seeds in the southern area for early
majority adopters, but the advantage seems to disappear in the later adoption stages.
Warm weather, tends to cause heavier weed infestation in southern areas, suggesting that

early majority adopters are responding to severe weed infestation problems.

Other results

For early to mid-stage adopters (1996 — 2001 and 2001 — 2006), the estimated risk averse
parameters f3, are positive and significant, suggesting that early majority and late
majority farmers in our samples are risk averse. They are also more risk averse if their
farm size is larger, as the estimated parameter f3; is negative and significant. The
estimated parameters f3,, f; are not statistically significant for model fitted for the
“laggard” stage, indicating that farmers in our sample are not risk averse after 12 years of
experimenting with GM soybean seed technology.

The effects of the random state variable on the variance of conventional seed
profits (y;) is positive and significant for the early majority (1996-2001), indicating that
these farmers perceive a higher variance about profitability of conventional seeds.
However, such patterns disappear towards the mid- and end-stage of the diffusion path,

probably because farmers plant GM seeds on most of their land at this stage.
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Discussion

In this paper, we document the evolution of learning and uncertainty in the adoption of
GM soybean seeds by farmers in the U.S. by examining farmers’ adoption decisions in
three stages along the diffusion path: the “early majority” (1996 — 2001), the “late
majority” (2001 — 2006), and the “laggard” stages (2006 — 2009). Unique data divided
into three distinct panels of farmers surveyed annually between 1996-2001, 2001-2006,
and 2006-2009, allows us to compare the results of a “forward-looking” model with a
“myopic” model by modeling farmers’ adoption decisions in early-, midterm-, and last-
stage of the diffusion path.

We find that the “forward-looking” model fits our data better than the myopic
model in the “early majority” and “late majority” stages of the adoption process,
suggesting that farmers in our samples are more likely to be forward-looking in the first
12 years of experimentation with the technology. Both models perform equally well in
the last adoption stage, likely due to no differences in learning between myopic and
forward-looking farmers once technology adoption has reached steady state.

We also find that farmers learn both from their own and neighbors’ experiences in
the “early majority” and “late majority” stages, although neighborhood effect is
considerably smaller in the late majority stage. In the “laggard” stage, learning is
complete, resulting in minimal uncertainty from both sources. As a result, learning
efficiency from own-experience and neighbor’s experience improves each year, resulting

in a decrease in uncertainty about profitability of GM soybean seeds over time.
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It is important to recognize farmers’ forward-looking behavior in “early majority”
and “late majority” stages of the adoption process, and the similarity between myopic and
forward-looking behavior in the “laggard” stage of the adoption process. For researchers
studying technology adoption (or demand analysis of new products), our study provides
guidance on how and when to choose the appropriate static or dynamic model. For early
stages along the diffusion path, the dynamic model with future learning incorporated may
provide a more accurate illustration of the market and demand. On the other hand, for a
product in its later stages of the diffusion path, the simple static model would be
appealing without loss of much insight in potential adopters’ learning. Another important
finding is how farmers’ learning evolves over time. The fact that they switch from
counting on neighbor learning to self-learning when moving along the diffusion path can
serve as a source of information for policy makers or marketing firms interested in
promoting the adoption of new agricultural technologies and could be extended to other
market analyses. For example, it may be more effective to focus on providing training
and extension support when introducing a new technology to farmers in the very early
stage of the technology, and then focus more on subsidizing farmer adoption when the
technology has already been in the market and adopted by certain percentage of potential

users.
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Appendix
Farmer expected utility

We assume farmers are uncertain about seed profitability for both technologies, i.e. the
distribution function of profits is unknown. Let the total profit of farmer i from planting

the two types of seeds in time ¢ defined as: 7, =7, + T where 7._and 7T, are the

profits from planting respectively conventional and GM seeds. Further, let the farmer’s

expected utility be a function of the mean and variance of the total profit [25]:
E(uit(ﬂ')|Iit)ZE(ﬂ'|I”)—%pi02(7Z"Iit), (Al)
where E(r) and o*(r) are the mean and variance of the total profit, and p, is a

measure of farmer i’s degree of risk aversion, such that, following [22]: p. = B + %. The

p1 parameter allows the risk attitude to vary by farm size.
Finally, we consider the following profit distributions for the two types of seeds:

Conventional seed: Assume the profit distribution function of the conventional seed

. 2 .
technology is known to farmers, and defined as r,, ~ N(u,,,0,,), where g _is the
average profit perceived by farmer i at time t and o is its corresponding variance.

Further, the variance may depend on a random state variable z; which follows an AR(1)

process. For example, random events such as pest infestation or weeds create profit

uncertainty with potentially lasting effects. Then, we define the variance term as o (z,),

where z =1z  +v,and v, ~ N(0, o) is the white noise added to the AR(1) process in
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each time period. We assume the random state variable brings additional uncertainty,
2 .2
thus oy, takes the form: o =y, +y,z, =7, +7,(4z,, +v,),where y >0.

GM seed: The profit for the new technology is defined as Tig = Mgy g where

My ~ N (é’igt,gp;t) is the perceived average profit of GM seed for farmer i at time ¢, and

&y ~ N(0, o?)is the error term following an i.i.d. normal distribution with zero mean and
constant variance. It includes the impact of unpredictable weather, soil quality and
unobserved farmer characteristics. Farmers form beliefs about the distribution of Higy>

which can be updated over time based on learning from own experience and interactions

with neighbors.

Farmer learning about GM seed profitability

We assume that farmers learn about the mean profitability of GM seed technology in a
Bayesian fashion. Specifically, the information set of farmer i at time 0, [;, consists of
exogenous information (e.g., this information can come from agronomists or agricultural
extension agents or from farmers’ own observations of pest and weed infestation in past
years and possible effectiveness of GM seeds) on the GM average profit {;40 and its
accuracy (pizgo. At time 1, farmer i may partially experiment with GM seeds and then,
using information from his field experiments and/or from neighbors, updates the
information set to [;; with beliefs on both parameters {;4; and <pl-291. This process

continues until learning is complete. As a note, our data do not include information on the
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actual profits, so we assume that farmers’ beliefs on GM mean profit {; 4 is constant over
time. Farmers receive an unbiased estimate of it initially, and then update their beliefs on
its accuracy, (pizgt in later time periods according to the Bayesian rule as follows (see

[22], Appendix A for detailed derivation):

5 1
Py =1 .G, . 6.7
2 +T 2. 2
it o, 0;+0¢

(A2)

&

where G;; is the number of plots planted by farmer i with the GM seed at time ¢, G_;; is

the average number of plots planted by his neighbors at time t, and 052 is the additional

. . . . . . 1 1
known variance or noise in learning from neighbors. The coefficients = and —5 52 can be
€ € f

interpreted as the weights farmers attach to self and social information sources. In general
information gained from own experience is more precise than that obtained from

2
OPi(1+1)
oG_y |

2
O (1+1)

neighbors’ experience: |—&

>

Farmer adoption process

We assume heterogeneity among farmer i’s farmland due to differences in soil quality,
infestation vulnerability, or other factors relating to agricultural production conditions.
Farmer i can arrange his land in plots such that the suitability to plant GM seeds is
decreasing in plot order. Let plots be ranked by k; = 1,2, ..., A; from high to low
suitability for GM seeds. Then, for each plot k; the difference between the unbiased

belief of GM seed mean profit ({ i’fg) and the conventional seed mean profit (n.), Au¥, is

A =8 —n, =1,(X)—1,. -, (A3)
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where 1,4 is the upper bound of the profit difference, which is a function of farmer i’s
characteristics X;. Assume 74, > 0 so that the mean profit difference between the two
types of seeds is decreasing in k;.

Using equation (A3), if farmers’ adoption decisions are made based on comparing
mean profits only (without forward-looking) and there is independence of profits from

different land plots, the mean and variance of the total profit take the following form:
E(ﬂ-it) = (nc + nigait - % Ugcai?) ) ‘/471’ (A4)

o’ (z,) =l (9, +o)+(1-a,) -0y, ]- 4, (A5)

Then, the current payoff at time t for farmer i is:

2
u; :E[ﬂit]_% 0 (7[1:)
2 2 2 2 22\ 42
= (77c +177,. %, _%ngcail)Ait _% i(ait ’ ((Digt + 0, )+ _ait) O-[ct)Ait
2 2 2 2
=u, (aw(Pig (Gi(t—1)7G—i(z—1) |o, 50 )01 (2,5, [ 705 71)5 4, | nc’nig’ngc’pi)

=u,(a,,1,|0),

it >
where the information set [;; consists of all factors that affect current expected utilities

and/or probability distribution of future expected utilities. It includes current belief of

GM profit variance gol-zgt, profit variance of conventional seeds o, and total soybean

acreage A;;. The set ® is the model’s parameter space, defined as

O={0.,02,0.,70:V1>MerMger > Pi}-
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