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Abstract 

This paper examines how the evolution of learning affects technology adoption. We use a 
sequential adoption model that accounts for differences between forward-looking 
adopters, who consider future impacts of their learning, and myopic adopters, who only 
consider past learning. We apply the analysis to three panels of U.S. soybean farmers 
representing different stages of the genetically modified (GM) seed technology diffusion 
path. We show that uncertainty is considerably reduced over time due to increased 
learning efficiency. Our results indicate that a forward-looking model fits the early 
adopters and early majority stages better, while both models perform equally well in the 
laggard stage. 
 

JEL classification: D83, Q31, Q33, Q16 

Keywords: diffusion path, genetically modified soybean seeds uncertainty, learning, 
technology adoption, uncertainty. 
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Introduction 
 
New technology diffusion and adoption are two sides of the same coin—with “diffusion” 

referring to the rate at which a new technology spreads among all potential users and 

“adoption” describing an individual user’s decision to try or not to experiment with new 

technology. Researchers in the fields of sociology, anthropology, education, social 

networks, and communications have extensively studied the technology diffusion path 

[1]. The S-shaped path – broken down into “early adopters”, “early majority”, “late 

majority”, and “laggard” stages – is commonly observed in many cases and is a well-

known result of these studies. Following [1-2], “early adopters” and “early majority” are 

defined as the stages where the number of new adopters increases but with different 

trends: faster and slowly, respectively; and “late majority” and “laggards” are the stages 

where the number of new adopter decreases, also with the different trend: slowly and 

faster, respectively [1-5]. Economists, on the other hand, have studied adoption 

decisions—developing models that identify, examine, and characterize the various factors 

that may influence a user’s technology adoption decisions [6]. In this literature, binary 

choice models, wherein users choose to adopt a new technology or choose not to adopt 

[7-10], are distinguished from sequential adoption models, wherein users initially and 

partially adopt a technology, and then adjust adoption practices in later years [11,12]. 

Some researchers model myopic adoption behavior with immediate utility maximization 

only [13-15], while others model forward-looking behavior where adopters maximize 

utility over a planning horizon [16-18]. 
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While most papers on adoption allow for time -varying covariates that may 

change over time, there is limited study documenting explicitly whether and how 

adoption decisions change in different stages of the technology diffusion path. Changes 

in adoption decisions may be particularly relevant when new technology adoption is 

associated with changes in user knowledge and learning after initial uncertainty about the 

new technology’s functionality. This uncertainty is often seen when potential users are 

heterogeneous and/or the technology will be used in heterogeneous situations. For 

example, in the case of agricultural technology such as seeds or pesticides, farmer 

knowledge and resources can vary widely while their crop plots may differ in soil quality 

and vulnerability to potential infestations. Farmers may adjust adoption decisions based 

on learning about profitability by observing neighbors’ experiences or from their own 

past experiences, which could differ by diffusion stage.  

This study aims to understand how learning from adoption decisions evolves in 

different stages of the diffusion path. It may provide important guidance to researchers on 

how and when to choose the appropriate static or dynamic model in analyzing adoption 

decisions. For example, if there are not many learning dynamics at a certain stage of the 

adoption path, then the simple static model would be appropriate without loss of insight 

into potential adopters’ learning.  Moreover, the information on how farmers’ learning 

evolves is also helpful for policymakers and marketing companies in designing effective 

strategies promoting new technology adoption. 

In particular, we examine U.S. farmers’ adoption of new genetically modified 

(GM) soybean seed technology from its introduction in 1996 to 2009.  As Fig 1 suggests, 
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GM soybean seed technology exhibits a completed diffusion path: from 2 percent 

adoption in 1996 to 75 percent in 2001, then 95 percent adoption in 2009 where it 

currently remains. 

 

Fig 1. Adoption rate of GM soybean seeds in the U.S.: Year-level comparison of adoption rates of GM 
soybean seeds between 1996 to 2014. The data used is farm-level soybean seed purchase information 
collected by dmrkynetec, St. Louis, MO (dmrk). 
 

To understand GM soybean seed adoption decisions, our work joins a growing 

literature that examines behavioral explanations for sequential adoption of new 

technologies under uncertainty and learning [11,19,20-22]. Following previous studies, 

we hypothesize two sequential models with Bayesian learning in which farmers initially 

update believes about GM seed profitability after observing noisy signals from their own 

and neighbors’ experience. We follow [22] to specify and estimate (i) a “myopic” model 

in which farmers adopt technology at a rate that provides the highest current expected 

utility, and (ii) a “forward-looking” model in which farmers recognize that current 

technology choices will affect their future information sets.  

However, our work extends the modeling and analysis presented in [22].  By 

looking at farmers’ adoption decisions in different stages of the diffusion path, we obtain 
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insights about the evolution of learning and uncertainty. We apply our analysis to three 

distinct panels of soybean farmers in the U.S. for three time periods: 1996 – 2001, 2001 – 

2006, and 2006 – 2009. We did not include the 2010 – 2014 time period, because the 

market reached saturation starting in 2010. Following [3,4]’s definition of different 

diffusion stages, we label the 1996 – 2001 period the “early majority” stage, the 2001 – 

2006 period the “late majority” stage, and the 2006 – 2009 period the “laggard” stage. 

Concretely, we fit a polynomial specification to the adoption path and determine the stage 

categories by examining the sign of the first and second-order of the rate of changes in 

adoption increments. These periods correspond to adoption rates changing from zero 

adoption to 75%, then from 75% to 95%, and finally stable at around 95%. 

Our results suggest that uncertainty about profit reduces significantly after 

farmers experiment with the new seed technology for a number of years. This decrease is 

attributed to less noisy signals from their own and neighbors’ experiences, which, in turn, 

is associated with an increase in learning efficiency. We also find that the “forward-

looking” sequential model outperforms the “myopic” model in generating the observed 

adoption path for the 1996-2001 and 2001-2006 farmer panels, while both models 

perform equally well for the 2006-2009 farmer panel. This may be because diffusion is 

close to saturation beginning in 2006, thus little uncertainty remains about the new 

technology’s performance or attributes.   
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Methods 
 
Learning models 

In this section, we describe the “myopic” and “forward-looking” sequential learning 

models following [22] in the context of GM soybean seed technology adoption. Detailed 

derivations can be found in [22]. 

Consider farmer 𝑖, who decides in each time period t = 1,…,T which seed 

technologies to plant on her farmland of size . She has two choices: an existing 

conventional technology (old) and/or a newly developed GM technology (new). Let

denote the amount of farmland planted with the new technology by farmer i at time 𝑡. 

Farmer 𝑖 chooses the optimal adoption rate of the new technology to 

maximize the expected present utility value over the planning horizon. The value 

function of farmer i at time t, , is defined as: 

      (1) 

where 𝛿 > 0 is the discount factor and is the utility of farmer i at time .  

The Bellman equation is: 

 for  (2) 

where is the information set of farmer 𝑖 at time 𝑡, and is a set representing the 

parameter space to be defined in the model. Equation (2) indicates that the value of 
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choosing a specific adoption rate at time 𝑡 equals the sum between the immediate utility 

of choosing (i.e. ) and the additional expected value of choosing  of 

having the augmented information set (i.e. ). This specification 

provides an information gathering incentive. For example, a farmer may choose to 

partially adopt the new technology, even if doing so provides a lower expected utility 

than with zero adoption, as long as this decision leads to a sufficient increase in the value 

of information she will have in the following time period.  Therefore, we define farmers 

with immediate expected utility maximizers (where 𝛿 = 0) the “myopic” ones, and those 

with expected utility maximizers over a planning horizon (where 𝛿 > 0) the “forward-

looking” ones. 

We assume that the distribution functions of profits for both seed technologies are 

unknown to farmers. Following [22], we construct farmer i’s expected utility at time t as 

a function of the mean and variance of the total profits from planting the two types of 

seeds: , where the subscript “g” denotes the GM seed type, and the 

subscript “c” denotes the conventional seed type. Farmer learning about GM seed 

profitability, and hence the adoption process for both myopic and forward-looking 

farmers, can be developed accordingly (refer to the appendix for details).  

The current payoff at time 𝑡 for farmer 𝑖 is: 

     (3) 

where 
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The derivation of the mean ( ) and variance of the total profits ( ) can be 

found in the appendix, or in [22]. As defined earlier, is farmer i’s adoption rate of the 

GM seed technology in her farmland with total acreage at time t. We use  to 

measure farmer 𝑖’s degree of risk aversion, which is assumed to be inversely related to 

the acreage . The parameter  represents the mean profit of planting conventional 

seed per plot, which is common to all farmers, while is the upper bound of the plot 

level profit difference between planting GM seed and conventional seed. Additionally, 

measures the rate of dissipation of such profit difference along with adoption. Factors 

affecting the variance of the total profits include adoption rate , total acreage , the 

current belief of GM profit variance , the profit variance of conventional seeds , 

and the time invariant GM profit variance .  

Equation (3) suggests that farmer’s utility function is determined by the choice 

variable (adoption rate ) and the information set , given the remaining parameter 

space . In our model, the information set  consists of factors that affect current 

expected utilities and/or the probability distribution of the future expected utilities (i.e. 

,  and ). The parameter space set  include parameters used to define the 

variance of conventional seed profitability, the risk aversion measurement, the mean 

profits of planting conventional seeds and the mean profit differences between 
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conventional seeds and GM seeds, the time invariant GM profit variance  (which can 

be obtained by learning from own experience), a parameter measuring the variance in 

learning of GM profitability from neighbors , and the white noise added to the 

variance of the conventional seed profitability . 

Data 

For our empirical analysis, we use U.S. farm-level soybean seed purchase data collected 

by dmrkynetec, St. Louis, MO (dmrk).  Data are obtained from annual surveys on a 

stratified sample of U.S. soybean growers since the introduction of GM soybean seed in 

the U.S. in 1996. It includes information on seed type, quantity, and prices, and on farm 

size for 26,314 farmers between 1996 and 2014. To capture the evolution of uncertainty 

and learning, we examine farmer’s adoption decisions in three distinct stages along the 

diffusion path: early majority (1996 – 2001), late majority (2001 – 2006), and laggard 

(2006 – 2009). Note that we do not examine 2010 – 2014 as the adoption rate seems to 

have reached saturation limit by 2010 (Fig 1). We chose farmers who farmed soybeans in 

each year of the time periods of each of our three study panels. We further eliminate 

farmers with total soybean acreage changing dramatically over the sample period to 

remove those with frequent switching behavior between soybean and other crops. We do 

this by constructing a farm acreage variation measure by dividing the standard deviation 

of the farm acreage by its mean. We dropped those farmers with greater than 40 percent 

variation. We also dropped Crop Reporting Districts (CRD) (as defined by the United 

States Department of Agriculture (USDA)) in which the number of surveyed farmers fell 
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below the 10 percent quantile (the threshold number of farmers is 8  in 1996 – 2001, 11 

in  2001 – 2006, and 8 in 2006 – 2009) to ensure statistical significance in calculating 

CRD-level market characteristics. Our panel data contain 377 early majority adopters, 

190 late majority adopters, and 473 laggard adopters. Fig 2 shows the average farmer 

adoption rate of GM soybean seeds from our three study panels (1996-2009), from the 

whole dmrk data (1996-2009), and USDA data (2000 to 2009, based on data availability) 

[26]. All adoption data follow a similar pattern, suggesting that farmers in our samples do 

not differ from those in the population at large in terms of adoption behavior over time. 

 

Fig 2: Average adoption rate of GM soybean seeds in the U.S.: sample vs. population. Comparison of 
DMRK population (khaki long line) vs. farmers in panels (red dotted line) vs. USDA population (blue 
dashed line) adoption rate of genetically modified soybean seeds in the U.S. From left to right, the first 
vertical solid grey line indicates the end of the “early majority” stage (1996 – 2001) and the second line 
indicates the end of the “late majority” stage (2001 – 2006). 

 

We believe learning from neighbors is valuable if neighbors face similar agro-

climatic conditions. Therefore, we use CRD as a proxy for local market. This aligns with 

common practice in the empirical literature, in which the neighborhood effect is based on 

geographical proximity [11,23,24]. We construct the CRD adoption rate using the dmrk 
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population data. Thus, while 𝐴!" is measured by individual farmer’s total soybean acreage 

in year t, 𝐴#!" is calculated by the average soybean acreage for other farmers in the CRD 

in that year.  We also include both linear and quadratic forms of latitude and longitude of 

the center of the county where each farmer is located. This captures spatial heterogeneity 

in farming systems and agro-climatic conditions (e.g. temperature, rainfall volume, and 

daylight length).   

Table 1 shows summary statistics of the variables for each panel of farmers. The 

average soybean acreage for farmers in each panel is notably larger than that of their 

neighbors. It seems likely that DMRK oversamples big farms, and that big farms are 

more likely to stay in the panel than small ones. Yet Fig 2 shows that there may not be 

much attrition bias for our study purpose. Descriptive statistics also suggest that panel 

farmers and their neighbors pay similar prices for conventional and GM seeds. Also, seed 

prices increased considerably between 1996-2001 and 2006-2009. The average price 

premium for GM seeds relative to conventional also increased from around $8.5 in 1996-

2001, to about $13 in 2006-2009; yet, price difference between conventional and GM 

stays at around 85 percent.  Latitude and longitude variables show that farmers in the 

three panels are located in the U. S. Midwest. 

 
Table 1. Variable description and summary statistics. 

Variable Description 
1996-2001 2001-2006 2006-2009 

Mean SD Mean SD Mean SD 
⍺!" Farmer i’s adoption rate at time t 0.41 0.45 0.84 0.34 0.96 0.19 
⍺!"#$ Farmer i’s adoption rate at time t-1 0.34 0.42 0.82 0.35 0.96 0.19 
⍺#!" 

  
Farmer i’s neighbors’ adoption rate 
at time t 

0.43 0.29 0.86 0.11 0.95 0.1 

⍺#!"#$  
 

Farmer i’s neighbors’ adoption rate 
at time t-1 

0.37 0.27 0.84 0.11 0.96 0.1 
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𝐴!  
 

Farmer i’s total soybean acreages 258 255 305 310 398 398 

𝐴#!  
 

Farmer i’s neighbors’ total soybean 
acreage 

95 39 97 44 118 94 

𝑃!"%& 
  

GM seed price paid by farmer i at 
time t ($/50 lb. bag) 

19.71 4.06 23.78 3.73 31.64 5.99 

𝑃#!"%&  
 

GM seed price paid by farmer i’s 
neighbors at time t ($/50 lb. bag) 

19.53 3.57 23.59 2.92 31.54 5.34 

𝑃!"'()* 
  

Conventional seed price paid by 
farmer i at time t ($/50 lb. bag) 

11.37 4.03 12.69 4.35 18.09 4.68 

𝑃#!"'()*  

Conventional seed price paid by 
farmer i’s neighbors at time t ($/50 
lb. bag) 

10.61 2.82 12.31 4.26 18.08 4.68 

     Lat Latitude of the farm 41.05 2.33 41.33 2.35 41.15 2.8 
     Lon Longitude of the farm 89.71 5.05 91.08 4.62 90.81 4.99 

Description of variables and summary statistics (mean and standard deviation (SD)) of variables used in the 
analysis for “early majority” (1996-2001), “late majority” (2001-2006), and “laggard” (2006-2009) samples 
of farmers. 
 

Estimation 

In the empirical application, we apply the structural models discussed in the Methods-

Learning Models section to each panel of farmers described in Methods-Data section. For 

each model, we use the Nelder-Mead simplex method to minimize the simulated 

generalized method of moments (GMM) objective function. More precisely, we search 

for the set of parameters that minimize a weighted distance between the optimal 

(predicted) adoption path and the observed adoption path (see [22] for details).  The 

instruments used to facilitate the estimation are presented in the next section.   

 
The “myopic” model 

Myopic farmers choose the adoption rate that gives the highest current period expected 

utility. They maximize the value function defined in equation (1), with discount 

factor set to 𝛿 = 0 and utility function as specified in equation (3): 
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The first order condition gives: 

,      (4) 

where  is the parameter space as defined before; and the second-order condition holds. 

To compute the predicted adopted path for each farmer in each panel following 

equation (4) we need to update the Bayesian beliefs on the variance of GM seed mean 

profitability ( ) after each time period. Because the actual adoption rate in the first year 

of each panel (1996, 2001, 2006) is known (noting that that observations form the first 

year of each time period sample are used as a benchmark only), we can obtain the 

perceived GM variance for the first period ( ) by solving the inverse function of 

 for . We then update  for all the following years according to the 

Bayesian rule in equation (A2) in the appendix. 

 

The “forward-looking” model 

Forward-looking farmers choose the adoption rate that maximizes the expected present 

value of utility over a planning horizon. They perceive that their current choices affect 

their information sets, and this perception creates an incentive to experiment to learn 

about the technology. The optimization problem follows the value function defined in 

equation (1), with discount factor 𝛿 > 0 and utility function defined in equation (3): 
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To compute the predicted adoption path, we make the following assumptions: 

The transition probabilities: We rewrite and as and because we focus on  

farmers with relatively stable farm size over time. Thus, the information set can be 

reduced to . Following [11] we write the transition 

rules for all these variables in Markovian form (see [22], section 4.2.1 for details).  

The value function of the last period:  Data suggest that toward the end of 2001 the 

change in adoption rate decreased in slope and flattened after 2006 (see Fig1). As such, 

we assume that in the last period of each sample, sequential learning reaches steady state, 

i.e. for 𝑡 ≥ 6  in the 1996-2001 and 2001-2006 panels, and for 𝑡 ≥

4in the 2006-2009 panels.  

The prior for the first period Bayesian beliefs: The relationship between Bayesian beliefs 

and farmers’ adoption rates is no longer a one-to-one correspondence as in the “myopic” 

model; therefore, we cannot obtain first period priors, , from the first year’s actual 

adoption rates. To overcome this problem we use beliefs of each farmer in year 1996, 

2001, and 2006 in the myopic case as reference values in the forward-looking case. We 

add a parameter 𝑏 to all these myopic beliefs to account for the potential bias introduced 

by the assumption. For example, the perceived variance of GM seed mean profitability in 

year 1997 for farmer 𝑖 in panel 1996-2001 follows the Bayesian rule: 

       (5) 
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The same rule is applied for year 2001 in panel 2001-2006 and year 2006 in panel 2006-

2009. 

Results 

In estimation of the “forward-looking” model we chose the discount factor at . 

In addition to the discount factor 𝛿 and the additional bias parameter b, there are another 

14 parameters to be estimated as listed in Table 2. These 14 parameters are shared by the 

“myopic” model. The initial values for the “myopic” model for each panel of farmers 

follow [22] (see Table 2). We use the estimated parameters in the “myopic” model as 

starting values for the “forward-looking” model.  

Table 2.  Initial values for parameters of the “myopic” model. 

Parameter Definition Initial value 
𝜂!+ Constant term of GM mean profit 1.00 

𝜂+, Decreasing rate of GM mean profit with adoption 0.50 

𝛾- Constant term for Conv variance 5.00 

𝜎./ GM profit variance 1.00 

𝜎0/ Learning variance from neighbors 10.00 

𝛽- Risk averse 1.00 

𝛽$ Farm size effect on risk averse 0 

𝜆 Parameter of AR1 process 0.20 

𝜎*/ Disturbance of AR1 process 0.24 

𝛾$ Linear term for Conventional variance 1.00 

𝑐112" Latitude effect on mean profit -0.19 

𝑐212"/ Second-order effect of latitude 0.08E-02 

𝑐31() Longitude effect on mean profit 0.25 

𝑐41()/ Second-order effect of longitude -0.03E-02 

b Adjustment on Bayesian beliefs on GM variance 0 

The initial parameter values for the “myopic” model for each panel of farmers: “early majority” (1996-
2001), “late majority” (2001-2006), and “laggard” stage (2006-2009).  

0.96d =
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We choose 17 instruments to estimate GMM: a constant vector 1, total soybean 

acreage of farmer 𝑖 and his neighbors ( , ) plus the square terms, previous year 

adoption rate ( , )	and the square terms, farm characteristics (latitude and 

longitude of each county center where farms are located and the square terms). Although 

not explicitly included in our model, pricing also affects adoption decisions. As such, we 

add conventional and GM seed prices paid by farmer 𝑖 and his neighbors (computed as 

the average price in a given CRD). 

 Parameter estimates and standard errors for both “myopic” and “forward-

looking” models are presented in Table 3. Our results suggest that the “forward-looking” 

model predicts a different adoption scenario than the “myopic” model for the 1996-2001 

panel of farmers. Differences in predictions between the two models significantly 

decrease for the 2001-2006 panel. For the 2006-2009 panel the predictions are very 

similar. One possible explanation is that, even if farmers are “forward-looking,” the value 

of the information gathering process declines. As farmers experiment with the technology 

their expectations for new leaning may also decrease.  

Table 3. Estimation results for the “myopic” and “forward-looking” models. 

Parameter 

Early Majority 
(1996-2001) 

Late Majority 
(2001-2006) 

Laggard 
(2006-2009) 

“Myopic”  “Forward-
looking” 

“Myopic”  “Forward-
looking” 

“Myopic”  “Forward-
looking” 

𝜂!+ 
 

1.82*** 
(0.01) 

2.04*** 
(0.22) 

1.51*** 
(0.40) 

1.73*** 
(0.19) 

0.56*** 
(0.02) 

0.71 
(1.07) 

𝜂+, 
 

0.42*** 
(0.01) 

0.42 
(0.50) 

0.57*** 
(0.15) 

0.61 
(0.46) 

0.57*** 
(0.06) 

0.24 
(0.24) 

𝛾- 
 

3.15*** 
(0.01e-2) 

1.42*** 
(0.26) 

6.09 
(11.42) 

3.60*** 
(0.54) 

5.02 
(74.71) 

4.31*** 
(0.98) 

𝜎+/ 
 

0.83*** 
(0.03) 

0.82*** 
(0.04) 

0.34 
(1.23) 

0.25** 
(0.10) 

0.03 
(0.43) 

0.03 
(0.02) 

iA iA-

( 1)i ta - ( 1)i ta- - iX
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𝜎0/ 
 

31.74* 
(15.07) 

59.57 
(39.59) 

18.41 
(49.52) 

41.61*** 
(5.63) 

35.79 
(515.75) 

96.04 
(78.17) 

𝛽- 
 

1.19*** 
(0.06e-1) 

1.08*** 
(0.25) 

1.40 
(4.39) 

1.30*** 
(0.12) 

1.09 
(14.14) 

2.57 
(4.05) 

𝛽$ 
 

-0.84*** 
(0.00) 

-0.90*** 
(0.04) 

-0.13 
(0.93) 

-0.14*** 
(0.03) 

0.05 
(1.19) 

-0.16 
(0.14) 

𝜆 
 

0.21 
(0.70) 

0.23*** 
(0.01) 

0.20 
(13.49) 

0.25*** 
(0.05) 

0.23 
(34.99) 

0.29 
(0.71) 

𝜎*/ 
 

0.46 
(0.52) 

0.52 
(0.32) 

0.32 
(27.77) 

0.30* 
(0.17) 

0.40 
(46.51) 

0.37 
(3.36) 

𝛾$ 
 

1.95 
(2.26) 

1.81*** 
(0.57) 

0.87 
(143.80) 

1.01 
(3.20) 

0.53 
(108.97) 

1.55 
(8.03) 

𝑐112" 
 

0.05*** 
(0.01e-1) 

0.05* 
(0.02) 

-0.18 
(1.04) 

-0.13 
(0.33) 

-0.11 
(0.18) 

-0.33 
(0.40) 

𝑐212"/ 
 

0.05e-2*** 
(0.01e-2) 

0.06e-2 
(0.05e-1) 

0.01e-1 
(0.10) 

0.01e-1 
(0.02e-1) 

0.09e-2 
(0.07e-1) 

-0.01e-1 
(0.01e-1) 

𝑐31() 
 

0.53*** 
(0.02e-1) 

0.53 
(1.63) 

0.28 
(2.10) 

0.32 
0.89 

0.48*** 
(0.09e-1) 

0.17 
(0.13) 

𝑐41()/ 
 

-0.01e-2 
(0.00) 

-0.01e-2 
(0.03) 

-0.04e-2 
(0.71) 

-0.04e-2 
(0.04e-2) 

-0.05e-2 
(0.13) 

0.22 
(0.28) 

𝑏 
 

 0.55*** 
(0.17) 

 0.18*** 
(0.01) 

 0.10 
(0.13) 

Mean 
Square 
Error 

2.485 0.177 0.185 0.049 0.012 0.011 

Parameter estimates and standard errors (numbers in parenthesis) for the “myopic” and “forward-looking” 
models for each panel of farmers: “early majority” (1996-2001), “late majority” (2001-2006), and 
“laggard” (2006-2009).  
 
Average squared root prediction errors for each particular year and each model (myopic. 

vs. forward-looking) are presented in Fig 3. In the following we present in more detail 

our findings for each panel of farmers. 
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Fig 3. Mean squared root prediction errors for the “myopic” and “forward-looking” models. Year-
by-year comparison of predictions in the “myopic” vs. “forward-looking” models across the three adoption 
stages: “early majority” (1996-2001, 2001-2006, 2006-2009). 
 

 

Model fit 

For the “early majority” (1996-2001) and the “late majority” (2001-2006), results in 

Table 3 indicate that the mean square errors from the “myopic” model are larger (and 

more so for the early majority) than from the “forward-looking” model, suggesting that 

both early majority and late majority behave in the forward-looking way. Using the 

average root squared prediction error for each particular year, Fig 3 indicates that the 

“forward-looking” model predicts more accurately in each year from 1996 to 2001. On 

average, the actual adoption rate is 40.15% and the predicted myopic and forward-

looking adoption rates are 48.84% and 41.81%, respectively. The “myopic” model 

predicts higher adoption rates in the first 6 years of experimenting with the new 

technology, suggesting that the myopic model may ignore the potential cost associated 

with adoption, thus lead to over-adoption.  
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However, along with learning in the very early stage of technology diffusion, 

farmers tend to shift from considering the future cost of adoption to incorporating future 

value of adoption in the second stage of diffusion. Thus, for the “late majority”, the 

myopic model and forward-looking adoption-rate projections move closer. The actual 

mean adoption rate is 83.63% and the predicted myopic and forward-looking adoption 

rates are 87.12% and 85.78%, respectively. 

The difference disappeared completely in the laggard stage (2006 – 2009). Table 

3 shows that both the “myopic” and “forward-looking” models fit the data equally well. 

The mean square errors of the two models are close to each other. This convergence may 

result from a completed learning process (farmers fully understand the quality or 

attributes of the new GM seed) as the new technology diffusion has reached saturation. 

The actual mean adoption rate is 96.90%, and this compares with the rate predicted by 

the “myopic” model of 96.5%, and by the “forward-looking” model of 95.75%. 

The parameter 𝑏 (Table 3) accounts for the difference in the Bayesian belief 

towards profit variance of GM seeds between myopic and forward-looking farmers. The 

parameter’s estimated value is positive and statistically significant for the “early 

majority” and “late majority” but not statistically significant for the “laggard” stage. This 

result suggests that the uncertainty about profitability of the new technology plays an 

important role in the first two stages along the diffusion path, yet with a declining 

magnitude. 
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Self-learning versus learning from neighbors 

Learning efficiencies, from own and neighbors’ experience, demonstrate different 

patterns along the diffusion path. We follow [11,22]  to define a farmer’s own-learning 

efficiency from planting GM seeds on plot as 𝜌$ =	
%
&34

, and the learning efficiency 

from his neighbor experience as 𝜌' =	
%

&34(	&5
4 

For the “early majority” stage (1996-2001), Table 3 shows that the parameter 𝜎*+	 

is positive and statistically significant, while the parameter  is not significant. These 

results indicate noise in learning from own experience but no additional learning noise 

from neighbor experience. Learning efficiencies from a farmer’s own experience and 

from his neighbors are about the same for the early majority ( ).  

 For the “late majority” stage (2001-2006), however, the estimated parameters 𝜎*+	 

and are both positive and statistically significant. Noise occurring in learning from 

neighbors is much louder than noise in self-learning. Consequently, the learning 

efficiency from a farmer’s own experience is much greater than that from neighbors’ 

experiences ( vs. ).  

For the “laggard” stage (2006-2009), the estimated parameters for 𝜎*+	 and  are 

not statistically significant. Consequently, there is perfect learning efficiency (

and ). As we argued earlier, there might be nothing new to learn about the 

technology when diffusion is saturated.  
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Comparing learning efficiency patterns along the three stages on the diffusion 

path, it seems that farmers are cautious in the very early stage of the technology diffusion 

path and try to learn as much as possible from all possible sources, either own 

experiences or neighbors’ experiences. When knowledge is accumulated, farmers tend to 

count more on own experiences than on neighbors’ experiences. And when adoption 

reaches its saturation, learning seems to be complete from both sources. Note that [22] 

estimated soybean farmers’ adoption from 2001 to 2004, which is part of our so-defined 

“late majority” stage. They also found that farmers have higher learning efficiency from 

own experience than from neighbors’ experiences. Our analysis provides a more 

complete picture of the evolution of learning along the diffusion path. 

 

Mean profit 

The estimated parameter represents the upper bound of the profit difference between 

conventional and GM technologies. It is positive, suggesting potential benefits of GM 

technology, yet with a decreasing magnitude moving along the diffusion path. And it is 

not statistically significant for the laggard stage. The  parameter is not statistically 

significant for all three stages on the diffusion path, implying that the marginal profit 

from adopting GM seeds does not change when farmers allocate more acreage to GM 

seeds. The net benefits from adopting GM seeds, ( ) decrease along the diffusion 

path and approach zero at the end stage. It seems that when adoption increases, farmers 

successfully allocate lands so that those suitable for GM seeds and those suitable for the 
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conventional seeds are planted with the corresponding appropriate technologies. The 

estimated parameters related to farm location ( , , , ) suggest that  GM 

technology may have advantage over  conventional seeds in the southern area for early 

majority adopters, but the advantage seems to disappear in the later adoption stages. 

Warm weather, tends to cause heavier weed infestation in southern areas, suggesting that 

early majority adopters are responding to severe weed infestation problems.  

 
Other results 

For early to mid-stage adopters (1996 – 2001 and 2001 – 2006), the estimated risk averse 

parameters 𝛽$ are positive and significant, suggesting that early majority and late 

majority farmers in our samples are risk averse. They are also more risk averse if their 

farm size is larger, as the estimated parameter 𝛽% is negative and significant. The 

estimated parameters 𝛽$, 𝛽% are not statistically significant for model fitted for the 

“laggard” stage, indicating that farmers in our sample are not risk averse after 12 years of 

experimenting with GM soybean seed technology. 

The effects of the random state variable on the variance of conventional seed 

profits (𝛾%) is positive and significant for the early majority (1996-2001), indicating that 

these farmers perceive a higher variance about profitability of conventional seeds. 

However, such patterns disappear towards the mid- and end-stage of the diffusion path, 

probably because farmers plant GM seeds on most of their land at this stage. 
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Discussion 

In this paper, we document the evolution of learning and uncertainty in the adoption of 

GM soybean seeds by farmers in the U.S. by examining farmers’ adoption decisions in 

three stages along the diffusion path: the “early majority” (1996 – 2001), the “late 

majority” (2001 – 2006), and the “laggard” stages (2006 – 2009). Unique data divided 

into three distinct panels of farmers surveyed annually between 1996-2001, 2001-2006, 

and 2006-2009, allows us to compare the results of a “forward-looking” model with a 

“myopic” model by modeling farmers’ adoption decisions in early-, midterm-, and last-

stage of the diffusion path. 

 We find that the “forward-looking” model fits our data better than the myopic 

model in the “early majority” and “late majority” stages of the adoption process, 

suggesting that farmers in our samples are more likely to be forward-looking in the first 

12 years of experimentation with the technology. Both models perform equally well in 

the last adoption stage, likely due to no differences in learning between myopic and 

forward-looking farmers once technology adoption has reached steady state. 

 We also find that farmers learn both from their own and neighbors’ experiences in 

the “early majority” and “late majority” stages, although neighborhood effect is 

considerably smaller in the late majority stage. In the “laggard” stage, learning is 

complete, resulting in minimal uncertainty from both sources. As a result, learning 

efficiency from own-experience and neighbor’s experience improves each year, resulting 

in a decrease in uncertainty about profitability of GM soybean seeds over time. 
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  It is important to recognize farmers’ forward-looking behavior in “early majority” 

and “late majority” stages of the adoption process, and the similarity between myopic and 

forward-looking behavior in the “laggard” stage of the adoption process. For researchers 

studying technology adoption (or demand analysis of new products), our study provides 

guidance on how and when to choose the appropriate static or dynamic model. For early 

stages along the diffusion path, the dynamic model with future learning incorporated may 

provide a more accurate illustration of the market and demand. On the other hand, for a 

product in its later stages of the diffusion path, the simple static model would be 

appealing without loss of much insight in potential adopters’ learning. Another important 

finding is how farmers’ learning evolves over time. The fact that they switch from 

counting on neighbor learning to self-learning when moving along the diffusion path can 

serve as a source of information for policy makers or marketing firms interested in 

promoting the adoption of new agricultural technologies and could be extended to other 

market analyses. For example, it may be more effective to focus on providing training 

and extension support when introducing a new technology to farmers in the very early 

stage of the technology, and then focus more on subsidizing farmer adoption when the 

technology has already been in the market and adopted by certain percentage of potential 

users. 
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Appendix 
 
Farmer expected utility 

We assume farmers are uncertain about seed profitability for both technologies, i.e. the 

distribution function of profits is unknown. Let the total profit of farmer i from planting 

the two types of seeds in time t  defined as: , where and are the 

profits from planting respectively conventional and GM seeds. Further, let the farmer’s 

expected utility be a function of the mean and variance of the total profit [25]: 

,     (A1) 

where   and  are the mean and variance of the total profit, and  is a 

measure of farmer 𝑖’s degree of risk aversion, such that, following [22]: . The 

𝛽% parameter allows the risk attitude to vary by farm size. 

Finally, we consider the following profit distributions for the two types of seeds: 

Conventional seed:  Assume the profit distribution function of the conventional seed 

technology is known to farmers, and defined as , where is the 

average profit perceived by farmer 𝑖 at time 𝑡	and is its corresponding variance. 

Further, the variance may depend on a random state variable 𝑧" which follows an AR(1) 

process. For example, random events such as pest infestation or weeds create profit 

uncertainty with potentially lasting effects. Then, we define the variance term as , 

where , and  is the white noise added to the AR(1) process in 
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each time period. 	We assume the random state variable brings additional uncertainty, 

thus 𝜎!,"+ 	takes the form: ,where . 

GM seed: The profit for the new technology is defined as , where 

 is the perceived average profit of GM seed for farmer 𝑖 at time t, and 

is the error term following an i.i.d. normal distribution with zero mean and 

constant variance. It includes the impact of unpredictable weather, soil quality and 

unobserved farmer characteristics. Farmers form beliefs about the distribution of , 

which can be updated over time based on learning from own experience and interactions 

with neighbors.  

 

Farmer learning about GM seed profitability 

We assume that farmers learn about the mean profitability of GM seed technology in a 

Bayesian fashion. Specifically, the information set of farmer 𝑖 at time 0, 𝐼!$ consists of 

exogenous information (e.g., this information can come from agronomists or agricultural 

extension agents or from farmers’ own observations of pest and weed infestation in past 

years and possible effectiveness of GM seeds) on the GM average profit 𝜁!-$ and its 

accuracy 𝜑!-$+ . At time 1, farmer 𝑖 may partially experiment with GM seeds and then, 

using information from his field experiments and/or from neighbors, updates the 

information set to 𝐼!% with beliefs on both parameters 𝜁!-% and 𝜑!-%+ . This process 

continues until learning is complete. As a note, our data do not include information on the 

2
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actual profits, so we assume that farmers’ beliefs on GM mean profit 𝜁!-" is constant over 

time. Farmers receive an unbiased estimate of it initially, and then update their beliefs on 

its accuracy, 𝜑!-"+  in later time periods according to the Bayesian rule as follows (see 

[22], Appendix A for detailed derivation): 

,       (A2) 

where 𝐺!" is the number of plots planted by farmer i with the GM seed at time 𝑡, 𝐺#!" is 

the average number of plots planted by his neighbors at time 𝑡, and 𝜎.
+ is the additional 

known variance or noise in learning from neighbors. The coefficients %
&34

 and %
&34(	&5

4 can be 

interpreted as the weights farmers attach to self and social information sources. In general 

information gained from own experience is more precise than that obtained from 

neighbors’ experience: . 

Farmer adoption process 

We assume heterogeneity among farmer 𝑖’s farmland due to differences in soil quality, 

infestation vulnerability, or other factors relating to agricultural production conditions. 

Farmer 𝑖 can arrange his land in plots such that the suitability to plant GM seeds is 

decreasing in plot order. Let plots be ranked by 𝑘! = 1,2, … , 𝐴! from high to low 

suitability for GM seeds. Then, for each plot 𝑘! 	the difference between the unbiased 

belief of GM seed mean profit (𝜁!-/ ) and the conventional seed mean profit (𝜂,), 𝛥𝜇!/, is 

,      (A3) 
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where 𝜂!- is the upper bound of the profit difference, which is a function of farmer 𝑖’s 

characteristics 𝑋!. Assume 𝜂-, > 0 so that the mean profit difference between the two 

types of seeds is decreasing in 𝑘!.  

 Using equation (A3), if farmers’ adoption decisions are made based on comparing 

mean profits only (without forward-looking) and there is independence of profits from 

different land plots, the mean and variance of the total profit take the following form: 

,      (A4) 

.     (A5) 

  

Then, the current payoff at time 𝑡 for farmer 𝑖 is: 

 

where the information set 𝐼!" consists of all factors that affect current expected utilities 

and/or probability distribution of future expected utilities. It includes current belief of 

GM profit variance 𝜑!-"+ , profit variance of conventional seeds 𝜎!,"+ ,	and total soybean 

acreage 𝐴!" . The set  is the model’s parameter space, defined as

. 
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