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Section one:
Motivation and Question 
Definition
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27% 
of blind people live 

below 
the poverty line

Background Information

1.3 million 
people in the US are 

legally blind. 

Same number of 
people as the 

population of Maine.

$38k
Median household 

income
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OrCam MyEye Pro

Starting at $3,999

“Speaks any readable text aloud 
on-demand”

“What really gets me about this is that 
we had to fund raise in order to be able 
to afford this. And what is it really? It’s 
nothing more than a $4000 bill (money) 
identifier. Totally feel cheated by this 
company and this product.”

Actual Reviews

“this is so expensive, i have been 
thinking to buy it for a family member 
who is in big need to be independent but 
it is really unaffordable”
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Objective

Fall 2022 Capstone and Beyond

❖ Proof of Concept in Notebook

❖ Create a model(s) that can 
accurately recognize 
handwritten text images

❖ Model should correct for 
misspelled words

❖ Mobile Application

❖ Identifies handwritten, 
currency, typed text, and 
computer screen text.

❖ All compute must be 
performed on device.

❖ 100% free for download and 
use
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Data and Model Pipeline

Data Processing

❖ Train/Validation/Test 
Split

❖ Exploratory Data 
Analysis

❖ Image and Label 
Preprocessing

➢ Data augmentation

➢ Vectorize labels

Computer Vision

❖ Explore standard NN 
models

❖ Explore CNN and RNN 
models 

❖ Design and implement 
evaluation metrics

NLP

❖ Spell check output 
words to account for 
misspelled words

❖ Evaluate performance 
metrics f

Output

❖ Prediction for each 
word image

❖ Evaluate and Compare 
Model Metrics
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Section two:

Data Exploration
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Data Characteristics

Type Handwritten text images

# of Images 96,456 words in English

# of Unique Texts 11,528

# of Unique Characters 78

Image Size Varies

Length of Text 1 - 21 characters

4 Examples of Text Labels
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Top 15 Most Popular Texts

Interestingly,
- The most popular text is “the”, which represents ~5% of the dataset
- The top 15 texts account for ~31% of the total text dataset
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Key challenges to model 
handwritten text images

● Unstructured data

● High variance in style and quality given the handwriting nature

● Multiple output (multiple characters) of each label

● No fixed length of strings in each text

● Order matters for sequential data

○ Recognizing the correct  characters but in the wrong order is not 
enough

● Duplicate strings (e.g. too) could be valid
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Key considerations of Labels

Two options:

● Use the entire text as the label
○ Pros: Little transformation work
○ Cons: 

■ Requires a vast amount of data to train each text label 
■ The model may not generalize well (~1M words in the English 

vocabulary)

● Use the single characters in each text as multiple labels
○ Pros: Only 78 common characters in the dataset, more efficient and 

generalizable
○ Cons: Higher complexity, handle timing sequence and minimize 

false positives (e.g. valid duplicate characters in a text)

Our planned approach
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Key steps of Data Preprocessing 

● Read and encode input images

● Standardize the image size and normalize pixel values

● Augment the data (e.g. rotation, brightness, contrast, flip)

● Encode characters to numbers and inverse back to characters

● Split data into train, validation and test dataset

12



Section three:
Modeling Approach and 
Evaluation Metrics
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Our Model Experiments

Note: we experimented with shallow neural network (e.g. multi-classification) and standard 
MLP neural network models with categorical cross-entropy loss function.  These models 
failed to capture the complex features of the dataset and produced less than 10% accuracy

14

Baseline Model CNN + CTC Loss/Decoder

Enhanced Model CNN + RNN (LTSM) + CTC

Target Model CNN + RNN + CTC + NLP Spell 
Check

Further Exploration Transformer



Questions?

How does the core model work for text images?

● Convolutional NN(CNN): Convolutional layers extract a sequence of features

● Recurrent NN(RNN): Propagate information through the sequence and output 
character-scores for each sequence-element (matrix)

● Connectionist Temporal Classification (CTC): calculate the loss to train the 
NN and decode the matrix to get the text contained in the input image

Information Source
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https://towardsdatascience.com/intuitively-understanding-connectionist-temporal-classification-3797e43a86c


❖ Measure Accuracy by individual letter 

❖ Measure Accuracy by each word

Models Evaluation Metrics
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Section four:
Model Performance 
Comparison
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Baseline Model (CNN + CTC Loss) Performance

Dataset Accuracy by Letter Accuracy by Word

Training    (86,810) 35.6% 21.3%

Validation  (4,823) 35.1% 20.6%

Test           (4,823) 34.1% 19.6%

Evaluation Metrics

❖ CNN does a better job than the standard 
NN for this dataset

❖ Loss curve declines and accuracies 
improve nicely for 15 epochs

❖ However, CNN is not sufficient for 
sequential data

Observation
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Enhanced Model (CNN + RNN+ CTC Loss) 

Much improved model performance than the Base Model!!

 Base     

Enhanced

Final version of the Enhanced Model



Enhanced Model (CNN + RNN + CTC Loss) 

Sample Predictions

Final Training Results
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Target Model (CNN + RNN + CTC Loss + NLP Spell Check) 

Base Model Enhanced Model Target Model

Accuracy by Letter 34.1% 88.5% 89.0%

Accuracy by Word 19.6% 75.1% 81.3%

Apply NLP Spell Check further improved predictions on test data!

NLP Spell Check Helped! NLP Spell Check Didn’t Help

Label:  Claudius Label:  returned



Explore Transformer Models

❖ Overcome RNN limitations 
➢ Remove RNN layers

➢ Parallel processing to speed up calculations

➢ Handle long sequences efficiently

❖ Potential to Enhance Model Performance

NLP Spell Check Didn’t Help

Label:  returned

Transformer Model did it!

Label:  returned

Transform Pred: returned
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Out-of-Box Transformer Model Performance

❖ Explored Microsoft TrOCR encoder and decoder models 
➢ Pre-trained on IAM and need further refining on this dataset

❖ Model Performance Comparison

Test Data Enhanced Model “Out of Box” Transformer 
Model

Model Train Time 2-3 weeks 8-10 hours

Accuracy by Letter 89% 60%

Accuracy by Word 75% 41%

We plan to refine the Transformer Models performance in our Capstone project
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Section Four:
Future Work
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Mobile App
Requirements

Accurate Text 
Recognition

Free to use 
and download

Support for 
Many Devices

Text-to-Voice
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❖ Only available on iPhone
➢ Newer phones

❖ Doesn’t implement NLP modeling
❖ Doesn’t implement same photo 

preprocessing as notebook 
implementation

Current Limitations



27

Mobile App 
Demo



Questions?
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****NOTE: If you have an iPhone and would like to be a tester of this app, 
or know anyone that could benefit from it, please let us know and we will 
add you to the beta release.

Thanks! Lisa and Camille
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Contributions
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❖ Camille Church: Team discussions, dataset selection, project 
vision, model theory research, accuracy metrics function,  model 
experiments (Optuna, CNN, RNN, NLP), mobile app POC, and 
presentation slides
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Mobile App 
Architecture
(iPhone)
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Trained TF Model

TensorFlow Lite 
Converter

TensorFlow Lite 
Model File

Interpreter

Mobile App



Real World Examples

32


