Project: Second Sight through Machine Learning Final Presentation

Lisa Wu and Camille Church W207 Machine Learning Fall 2022

Section one: Motivation and Question Definition

Background Information

27%

of blind people live below the **poverty** line

\$38k Median household

income

1.3 million

people in the US are legally blind.

Same number of people as the population of **Maine.**

- and the

3 monto

OrCam MyEye Pro

Starting at \$3,999

"Speaks any **readable** text aloud on-demand"

Actual Reviews

"What really gets me about this is that we had to fund raise in order to be able to afford this. And what is it really? It's nothing more than a \$4000 bill (money) identifier. Totally feel cheated by this company and this product."

"this is so expensive, i have been thinking to buy it for a family member who is in big need to be independent but it is really unaffordable"

Objective

Fall 2022

- Proof of Concept in Notebook
- Create a model(s) that can accurately recognize handwritten text images
- Model should correct for misspelled words

Capstone and Beyond

- Mobile Application
- Identifies handwritten, currency, typed text, and computer screen text.
- All compute must be performed on device.
- 100% free for download and use

Data and Model Pipeline

*

*

*

Data Processing	Computer Vision	NLP	Output
Train/Validation/Test Split	 Explore standard NN models 	 Spell check output words to account for 	 Prediction for each word image
Exploratory Data Analysis	 Explore CNN and RNN models 	misspelled wordsEvaluate performance	 Evaluate and Compare Model Metrics
Image and Label Preprocessing	 Design and implement evaluation metrics 	metrics f	
➤ Data augmentation			
➤ Vectorize labels			

Section two:

Data Exploration

Data Characteristics

Туре	Handwritten text images	
# of Images	96,456 words in English	
# of Unique Texts	11,528	
# of Unique Characters	78	
Image Size	Varies	
Length of Text	1 - 21 characters	

4 Examples of Text Labels

Top 15 Most Popular Texts

Interestingly,

- The most popular text is "the", which represents ~5% of the dataset
- The top 15 texts account for ~31% of the total text dataset

Key challenges to model handwritten text images

- Unstructured data
- High variance in style and quality given the handwriting nature
- Multiple output (multiple characters) of each label
- No fixed length of strings in each text
- Order matters for sequential data
 - Recognizing the correct characters but in the wrong order is not enough
- Duplicate strings (e.g. too) could be valid

Key considerations of Labels

Two options:

- Use the entire text as the label
 - **Pros:** Little transformation work
 - **Cons:**
 - Requires a vast amount of data to train each text label
 - The model may not generalize well (~1M words in the English vocabulary)
- Use the single characters in each text as multiple labels
 - **Pros:** Only 78 common characters in the dataset, more efficient and generalizable
 - **Cons:** Higher complexity, handle timing sequence and minimize false positives (e.g. valid duplicate characters in a text)

Our planned approach

Key steps of Data Preprocessing

- Read and encode input images
- Standardize the image size and normalize pixel values
- Augment the data (e.g. rotation, brightness, contrast, flip)

- Encode characters to numbers and inverse back to characters
- Split data into train, validation and test dataset

Section three: Modeling Approach and Evaluation Metrics

Our Model Experiments

Baseline Model	CNN + CTC Loss/Decoder
Enhanced Model	CNN + RNN (LTSM) + CTC
Target Model	CNN + RNN + CTC + NLP Spell Check
Further Exploration	Transformer

Note: we experimented with shallow neural network (e.g. multi-classification) and standard MLP neural network models with categorical cross-entropy loss function. These models failed to capture the complex features of the dataset and produced less than 10% accuracy

How does the core model work for text images?

- **Convolutional NN(CNN):** Convolutional layers extract a sequence of features
- **Recurrent NN(RNN):** Propagate information through the sequence and output character-scores for each sequence-element (matrix)
- **Connectionist Temporal Classification (CTC):** calculate the loss to train the NN and decode the matrix to get the text contained in the input image

Section four: Model Performance Comparison

Baseline Model (CNN + CTC Loss) Performance

Evaluation Metrics		
Dataset	Accuracy by Letter	Accuracy by Word
Training (86,810)	35.6%	21.3%
Validation (4,823)	35.1%	20.6%
Test (4,823)	34.1%	19.6%

Observation

- CNN does a better job than the standard NN for this dataset
- Loss curve declines and accuracies improve nicely for 15 epochs
- However, CNN is not sufficient for sequential data

Enhanced Model (CNN + RNN+ CTC Loss)

Much improved model performance than the Base Model!!

		Train Letter Accuracy	Val Letter Accuracy	Test Letter Accuracy	Train Word Accuracy	Val Word Accuracy	Test Word Accuracy	Kernel Size	Optimizer	Drop Out	RNN/LSTM	NLP Spell Check	Epochs
	(0.356	0.351	0.341	0.213	0.206	0.196	3,3	Adam	0.2			15
Base	$\left\{ \right.$	0.234	0.233	0.227	0.130	0.125	0.124	2,2	Adam	0.2			15
	C	0.332	0.325	0.322	0.197	0.192	0.187	3,3	SGD	0.2			15
	(0.875	0.850	0.842	0.724	0.676	0.667	3,3	Adam	0.2	[128,64]		15
		0.888	0.844	0.843	0.756	0.684	0.685	2,2	Adam	0.2	[200,128,64]		15
Enhanced	1	0.903	0.860	0.864	0.778	0.697	0.701	3,3	Adam	0.2	[200,128,64]		15
		0.919	0.872	0.866	0.813	0.718	0.711	2,2	Adam	0.25	[200,128,64]		35
	ך נ	0.937	0.886	0.885	0.852	0.746	0.751	3,3	Adam	0.25	[200,128,64]		35

Final version of the Enhanced Model

Enhanced Model (CNN + RNN + CTC Loss)

Target Model (CNN + RNN + CTC Loss + NLP Spell Check)

Apply NLP Spell Check further improved predictions on test data!

	Base Model	Enhanced Model	Target Model
Accuracy by Letter	34.1%	88.5%	89.0%
Accuracy by Word	19.6%	75.1%	81.3%

NLP Spell Check Helped!

Label: Claudius

Prediction: Clandius Spell Pred: Claudius

NLP Spell Check Didn't Help

Label: returned

Prediction: returned Spell Pred: resumed

Explore Transformer Models

Overcome RNN limitations

- Remove RNN layers \succ
- Parallel processing to speed up calculations \succ
- \succ Handle long sequences efficiently

Potential to Enhance Model Performance \bigstar

NLP Spell Check Didn't Help Label: returned Label: returned Prediction: returned Spell Pred: resumed

Transformer Model did it!

Transform Pred: returned

timed

Out-of-Box Transformer Model Performance

- Explored Microsoft TrOCR encoder and decoder models
 - Pre-trained on IAM and need further refining on this dataset
- Model Performance Comparison

Test Data	Enhanced Model	"Out of Box" Transformer Model
Model Train Time	2-3 weeks	8-10 hours
Accuracy by Letter	89%	60%
Accuracy by Word	75%	41%

We plan to refine the Transformer Models performance in our Capstone project

Section Four: Future Work

Accurate Text Recognition

Free to use and download

Text-to-Voice

Mobile App Requirements

Support for Many Devices

Current Limitations

- Only available on iPhone
 - Newer phones
- Doesn't implement NLP modeling
- Doesn't implement same photo preprocessing as notebook implementation

10:57

Ø

0

Ó

Dear Dad, Happy Birthday! Love CJ

Predicted Text:

Dear Dad, Happy Birthday! LOve CJ

Questions?

****NOTE: If you have an iPhone and would like to be a tester of this app, or know anyone that could benefit from it, please let us know and we will add you to the beta release.

Thanks! Lisa and Camille

References

- Connectionist Temporal Classification
- Handwriting Recognition using Machine Learning
- Build a Handwritten Text Recognition System
- <u>Microsoft TrOCR model</u>
- OrCam MyEye Pro The Most Advanced Wearable Assistive Device for the Br and Visually Impaired.
- Blindness Statistics
- Python Machine Learning, by Raschka and Mirjalili
- Transformers for NLP, Second Edition, by Denis Rothman

Github Repository

- https://github.com/Camille2985/w207_team_project

Contributions

- Camille Church: Team discussions, dataset selection, project vision, model theory research, accuracy metrics function, model experiments (Optuna, CNN, RNN, NLP), mobile app POC, and presentation slides
 - Lisa Wu: Team discussions, EDA, model theory research, refine accuracy metrics and graphs, model experiments (standard NN, CNN, RNN, NLP, Transformer), and presentation slides

Mobile App Architecture (iPhone)

Real World Examples

Predicted Text:

HANOVER CHICK PEAS Garbanzo Brans VEGAN

ACETAMINOPHEN 500 mg/ PAIN RELIEVER / F...

Predicted Text:

Bacon Sdw Warmed 06-Deo 2022 9:05:00 AM...