
Cornelia Ilin, PhD

Department of Ag & Applied Economics
UW-Madison

Week 4 - Summer 2019

AAE 875 – Fundamentals of Object Oriented
Programming and Data Analytics

• List nesting
• List comprehensions
• Dictionary nesting
• Functions and Methods

Chapter 11: More on Lists and Dictionaries

List nesting

print seed prices, in dollars
0: GM-IR 1: GM-HT

prices = [
[

0,
56, # GM-HT
125 # GM-IR

],
[

47 # GM-IR
121 # GM-HT

]
]
user_input = input('Enter seed pair (Ex: 0 1) -- ').strip()
seed1, seed2 = user_input.split()
print('Prices: %d dollars' % prices[int(seed1)][int(seed2)])

List comprehension

print seed prices, in dollars
0: GM-IR 1: GM-HT

prices = [
[

0,
56, # GM-HT
125 # GM-IR

],
[

47 # GM-IR
121 # GM-HT

]
]
sum_list = [sum(row) for row in my_list]
print(sum_list)

Dictionary nesting

print seed prices, in dollars

prices = {}
prices = {

'2018': {
'GM-IR': [79, 80],
'GM-HT': [120, 87]

},
'2019': {

'GM-IR': [110, 122],
'GM-HT': [65, 89]

}
}
print(prices['2018']['GM-HT'])

• Covered in the first week (Ch 3)

Functions and Methods

• Version control
• Reading (Input)
• Writing (Output)
• The 'with' statement
• Interacting with the file systems

Chapter 12: IO Files

• Extremely important for project file management!

Version control

• Extremely important for project file management!

Version control

Sadly, I am not able to tell
you what is the main code,
what each data set means…
why I have .csv, .txt, .pdf files
in the same place with no
related meaning… I don't
know!!!

This is me a couple of years ago!

• Extremely important for project file management!

Version control

Just ask me a question about
this project to see if I know
what's going on here 

And this is me after grad school

• Extremely important for project file management!
• Allows for collaborations (what if a team of 10 people work on the same project at

the same time?)

Version control

• Extremely important for project file management!
• Allows for collaborations (what if a team of 10 people work on the same project?)
• Two types of version control:

• Local, in a computer's hard drive (cat-proof but not disaster-proof)
• In the cloud, stored on a server (cat-proof and disaster-proof)

Version control

• What if you work for a company whose work is deemed 'highly confidential'?
• You cannot put any work on a server that is located at some address in Western Europe

Version control - local

• What if you work for a company whose work is deemed 'highly confidential'?
• You cannot put any work on a server that is located at some address in Western Europe
• All you can do is to implement version control in a computer's hard drive
• Allows for collaborations – provided computers are connected to the same network

Version control - local

• One example of Project Management (suitable for economists)

Version control - local

Literature

• Paper1
• Paper2

Input

• RawData
• FinalData

Output

• Stats
• Regressions

Results

• Report1
• Report2

Script

• Stats
• Regressions

• One example of Project Management (suitable for economists)

Version control - local

Literature

• Paper1
• Paper2

Input

• RawData
• FinalData

Output

• Stats
• Regressions

Results

• Report1
• Report2

Script

• Stats
• Regressions

• How can we track changes made? (yes, you will change your code multiple times!)

• One example of Project Management (suitable for economists)

Version control - local

Literature

• Paper1
• Paper2

Input

• RawData
• FinalData

Output

• Stats
• Regressions

Results

• Report1
• Report2

Script

• Stats
• 06.25.2019
• 06.26.2019
• 06.30.2019

• Regressions

Option 1: Never edit existing code!
Create a new version and edit there

• How can we track changes made? (yes, you will change your code multiple times!)

• One example of Project Management (suitable for economists)

Version control - local

Literature

• Paper1
• Paper2

Input

• RawData
• FinalData

Output

• Stats
• Regressions

Results

• Report1
• Report2

Script

• Stats
• Regressions

Option 2: use Git, a distributed
version-control system
<Topic covered in Lab this week>

• How can we track changes made? (yes, you will change your code multiple times!)

• Code written on your computer's hard drive is cat-proof but not disaster-proof
• Disaster-proof: if your computer explodes there is no way for you to recover the information
• To disaster-proof your work “push” your local project folder to a server (confidentiality?)
• GitHub offers you this service (i.e. GitHub can host a (Git) repository)

Version control - server

• Code written on your computer's hard drive is cat-proof but not disaster-proof
• Disaster-proof: if your computer explodes there is no way for you to recover the information
• To disaster-proof your work “push” your local project folder to a server (confidentiality?)
• GitHub offers you this service (i.e. GitHub can host a (Git) repository)
• Keep in mind that Git ≠ GitHub <covered in Lab this week>

Version control - server

Top Hat Question # 1

Set up a project folder in your own computer. What is the best way to do this if
information is confidential?

Data Analytics

• We are just a few steps away from the world of data analytics with Python

Data Analytics

• We are just a few steps away from the world of data analytics with Python

• What did you learn so far?
• Fundamental programming concepts (well, if you can get a data analyst job

w/o good command of these concepts let us know!)

Data Analytics

• We are just a few steps away from the world of data analytics with Python

• What did you learn so far?
• Fundamental programming concepts (well, if you can get a data analyst job

w/o good command of these concepts let us know!)

• Data types in Python (compare this with R)

Data Analytics

• We are just a few steps away from the world of data analytics with Python

• What did you learn so far?
• Fundamental programming concepts (well, if you can get a data analyst job

w/o good command of these concepts let us know!)

• Data types in Python (compare this with R)

• Code/Folder organization

Data Analytics

• We are just a few steps away from the world of data analytics with Python

• What else do we need to know?
• How to input/output files in Python (aka IO files)

• Data structures in Python

Data types

Non-primitivePrimitive

StringInteger Float Boolean List Tuple Array Dictionary Set File

numeric data types sequence data types mapping data type

set data type

file data type
I/O

• As economists we often need to read data from a file

• We then need to process that data to produce some useful statistics, regression results, etc.

• Data can come in different forms

• For example data can be in string form, numeric form and/or comma separated

• How to we read it in Python?

Input data

• Before going into details, 3 commands are useful:

Input data

open the file
stringfile = open('workfile' [, 'w'])

read the file
data = stringfile.read([size])

close the file
stringfile.close()

https://docs.python.org/3.3/tutorial/inputoutput.html

More information here:

https://docs.python.org/3.3/tutorial/inputoutput.html

• Before going into details, 3 commands are useful:

Input data

open the file
stringfile = open(workfile' [, 'w'])

read the file
data = stringfile.read([size])

close the file
stringfile.close()

The open() function creates a file object
The file object is named stringfile in this example

• Before going into details, 3 commands are useful:

Input data

open the file
stringfile = open(workfile' [, 'w'])

read the file
data = stringfile.read([size])

close the file
stringfile.close()

The open() function creates a file object
Most commonly used with two arguments:

• The first argument contains the file name

• Before going into details, 3 commands are useful:

Input data

open the file
stringfile = open(workfile' [, 'w'])

read the file
data = stringfile.read([size])

close the file
stringfile.close()

The open() function creates a file object
Most commonly used with two arguments:

• The first argument contains the file name
• The second argument (optional) defines the mode the file will be used:

• Before going into details, 3 commands are useful:

Input data

open the file
stringfile = open(workfile' [, 'w'])

read the file
data = stringfile.read([size])

close the file
stringfile.close()

The open() function creates a file object
Most commonly used with two arguments:

• The first argument contains the file name
• The second argument (optional) defines the mode the file will be used:

• r: if only reading (this is the default)
• w: if only writing
• a: opens the file for appending (data is added to the end)
• r+, w+, a+ : opens the data for both reading and writing

• Before going into details, 3 commands are useful:

Input data

open the file
stringfile = open(workfile' [, 'w'])

read the file
data = stringfile.read([size])

close the file
stringfile.close()

The read() method saves the content of the file object (stringfile) as a
string

• Before going into details, 3 commands are useful:

Input data

open the file
stringfile = open(workfile' [, 'w'])

read the file
data = stringfile.read([size])

close the file
stringfile.close()

The read() method saves the content of the file object (stringfile) as a
string
Size is an optional argument:

• Before going into details, 3 commands are useful:

Input data

open the file
stringfile = open(workfile' [, 'w'])

read the file
data = stringfile.read([size])

close the file
stringfile.close()

The read() method saves the content of the file object (stringfile) as a
string
Size is an optional argument:

• If omitted or negative, the entire data of the file will be read
• If positive, reads up to ?? bytes

• Before going into details, 3 commands are useful:

Input data

open the file
stringfile = open(workfile' [, 'w'])

read the file
data = stringfile.read([size])

close the file
stringfile.close() Closes the file object (recommended, to save memory)

• Print the data in the file 'text.txt'

Input data – string form

open the file
stringfile = open('text.txt')

read the file
data = stringfile.read()

close the file
stringfile.close()

print the data
print(data)

• Read all the lines of the 'text.txt' file in a list. Print only the first line of the file

Input data – string form

open the file
stringfile = open('text.txt')

read the file
data = stringfile.readlines()

close the file
stringfile.close()

print the data
print(data[0])

The readlines() method returns a list of strings
See also the readline() method

Top Hat Question # 2

What is the output?

open the file
stringfile = open('text.txt')

read the file
data = stringfile.readlines()

close the file
stringfile.close()

print the data
print(data[1])

• Read all the lines of the 'text.txt' file in a list. Print the data

Input data – string form

open the file
stringfile = open('text.txt')

read the file
data = stringfile.readlines()

close the file
stringfile.close()

print the data
for rows in data:

print(rows)

Top Hat Question # 3

What is the output?

open the file
stringfile = open('text.txt')

read the file
data = stringfile.readlines()

close the file
stringfile.close()

print the data
for rows in stringfile:

print(rows)

• Read all the lines of the 'numeric.txt' file in a list. Print the average number

Input data – numeric form

open the file
numfile= open('numeric.txt')

read the file
data = numfile.readlines()

close the file
numfile.close()

compute and print the average
total = 0
for row in data:

total += int(row)

average = total/len(data)
print('The average is', average)

• Most often data is organized in a spreadsheet format or database (columns x rows)
• A .CSV file separates data items by comma (cells)
• How do we read such data in Python?

Input data – comma separated form

• Most often data is organized in a spreadsheet format or database (columns x rows)
• A .CSV file separates data items by comma (cells)
• How do we read such data in Python?
• The Python csv module implements classes to read tabular data in CSV format

Input data – comma separated form

import csv

open the file
csvfile = open('workfile' [,'w', newline = ''])

read the file
data = csv.reader(filename [,delimiter = ','])

close the file
csvfile.close()

https://docs.python.org/3/library/csv.html
More information here:

https://docs.python.org/3/library/csv.html

• Most often data is organized in a spreadsheet format or database (columns x rows)
• A .CSV file separates data items by comma
• How do we read such data in Python?
• The Python csv module implements classes to read tabular data in CSV format

Input data – comma separated form

The reader() function in the csv module returns a reader
object which will iterate over lines in a given .csv file;

import csv

open the file
csvfile = open('workfile' [,'w', newline = ''])

read the file
data = csv.reader(filename [,delimiter = ','])

close the file
csvfile.close()

• Most often data is organized in a spreadsheet format or database (columns x rows)
• A .CSV file separates data items by comma
• How do we read such data in Python?
• The Python csv module implements classes to read tabular data in CSV format

Input data – comma separated form

The reader() function in the csv module returns a reader object
which will iterate over lines in a given .csv file;

Each row read from the csv file is returned as a list of strings;

import csv

open the file
csvfile = open('workfile' [,'w', newline = ''])

read the file
data = csv.reader(filename [,delimiter = ','])

close the file
csvfile.close()

• Most often data is organized in a spreadsheet format or database (columns x rows)
• A .CSV file separates data items by comma
• How do we read such data in Python?
• The Python csv module implements classes to read tabular data in CSV format

Input data – comma separated form

The reader() function in the csv module returns a reader object
which will iterate over lines in a given .csv file;

Each row read from the csv file is returned as a list of strings;

A couple of notes on arguments:
• filename is a file object created via open (e.g. csvfile)
• delimiter (optional) specifies the argument used in the csv

file to separate fields. The default is comma (new cell).

import csv

open the file
csvfile = open('workfile' [,'w', newline = ''])

read the file
data = csv.reader(filename [,delimiter = ','])

close the file
csvfile.close()

• Read each row of the 'seeds.csv' file

Input data – comma separated form

import csv
open the file
csvfile= open('seeds.csv', 'r+', newline = '')

read the file
data = csv.reader(csvfile, delimiter = ',')

print each row
row_no = 1
for row in data:

print('Row #', row_no, ':', row)
row_no += 1

close the file
csvfile.close()

Top Hat Question # 4

What is the output?

import csv
open the file
csvfile = open('seeds.csv', 'r+', newline = '')

read the file
data = csv.reader(csvfile, delimiter = ',')

print each row
row_no = 1
for row in data:

print('Row #', row_no, ':', row)

close the file
csvfile.close()

• Read each row of the 'seeds.csv' file. Compute the average of GM prices paid by farmers

Input data – comma separated form

import csv
open the file
csvfile = open('seeds.csv', 'r+', newline = '')

read the file
data = csv.reader(csvfile, delimiter = ',')

print average GM price
total_GMprice = 0
row_num = 0
csvfile.readline() # skips the first row in the csv file

cont'd
for row in data:

if row[1] == 'Conv':
continue

else:
total_GMprice += int(row[2])
row_num += 1

mean_GMprice = total_GMprice / row_num
print(mean_GMprice)

close the file
csvfile.close()

Top Hat Question # 5

What is the output?

import csv
open the file
Csvfile = open('seeds.csv', 'r+', newline = '')

read the file
data = csv.reader(csvfile, delimiter = ',')

print average GM price
total_GMprice = 0
row_num = 1
csvfile.readline()
csvfile.readline()

cont'd

for row in data:
print(row[2])
print(row_num)

close the file
csvfile.close()

Top Hat Question # 6

What is the output?

import csv
open the file
csvfile = open('seeds.csv', 'r+', newline = '')

read the file
data = csv.reader(csvfile, delimiter = ',')

close the file
csvfile.close()

print average GM price
total_GMprice = 0
row_num = 1
csvfile.readline()
csvfile.readline()

cont'd

for row in data:
row_num += 1
print(row[2])
print(row_num)

Top Hat Question # 7

Compute the average quantity sold of GM seeds? Write code. Use the 'seeds.csv' file

• Before going into details, 3 commands are useful:

open the file
stringfile = open('workfile' [,'w'])

write the file
stringfile.write([size])

close the file
stringfile.close()

Output data – string and/or numeric form

• Before going into details, 3 commands are useful:

The write() method writes a string to a file

open the file
stringfile = open('workfile' [,'w'])

write the file
stringfile.write([size])

close the file
stringfile.close()

Output data – string and/or numeric form

• Before going into details, 3 commands are useful:

Output data – string and/or numeric form

The write() method writes a string to a file
Integers and floating-points must be converted using the str() function

open the file
stringfile = open('workfile' [,'w'])

write the file
stringfile.write([size])

close the file
stringfile.close()

• Output 'Hello World' to a file named “my_output.txt”

open the file
stringfile = open('my_output.txt', 'w')

write the file
stringfile.write('Hello world \n')

close the file
stringfile.close()

Output data – string and/or numeric form

Top Hat Question # 8

What is the output?

open the file
stringfile = open('my_output.txt', 'w', newline = '')

write the file
stringfile.write('Hello world \n')
stringfile.write('I know Python \n')

close the file
stringfile.close()

Top Hat Question # 9

What is the output?

open the file
stringfile = open('my_output.txt', 'w')

write the file
stringfile.write('Hello world')
stringfile.write('I know Python')

close the file
stringfile.close()

• How do we output data in comma separated format in Python?
• The Python csv module implements classes to output tabular data in CSV format

Output data – comma separated form

import csv
open the file
csvfile = open('workfile' [, 'w', newline = ''])

write the file
data = csv.writer(filename [, delimiter = ' '])
data.writerow('string1'))
data.writerows(['string1', 'string2'])

close the file
csvfile.close()

https://docs.python.org/3/library/csv.html
More information here:

https://docs.python.org/3/library/csv.html

• How do we output data in comma separated format in Python?
• The Python csv module implements classes to output tabular data in CSV format

Output data – comma separated form

The writer() function in the csv module returns a writer
object responsible for converting the user's data into
delimited strings on the given workfile

import csv
open the file
csvfile = open('workfile' [, 'w', newline = ''])

write the file
data = csv.writer(filename [, delimiter = ' '])
data.writerow('string1'))
data.writerows(['string1', 'string2'])

close the file
csvfile.close()

• How do we output data in comma separated format in Python?
• The Python csv module implements classes to output tabular data in CSV format

Output data – comma separated form

The writer functions writerow() and writerows() can be
used to write a list of strings into the file as one or
more rows

import csv
open the file
csvfile = open('workfile' [, 'w', newline = ''])

write the file
data = csv.writer(filename [, delimiter = ' '])
string1 = “Hello”
string2 = “world”
data.writerow(string1))
data.writerows([string1, string2])

close the file
csvfile.close()

Top Hat Question # 10

Add a new row ['2', 'Conv', '55', '10', '2018'] to the file seeds.csv

• What if we forget to close a file? There is a solution to make sure Python automatically
closes the file: the 'with' statement. It is also a more efficient way to write code

The 'with' statement: Example 1

open the file
stringfile = open('text.txt')

read the file
data = stringfile.read()

close the file
stringfile.close()

print the data
print(data)

w/o “with”

open the file
with open('text.txt') as stringfile:

read the file
data = stringfile.read()
print the data
print(data)

w/ 'with' version

• What if we forget to close a file? There is a solution to make sure Python automatically
closes the file: the 'with' statement. It is also a more efficient way to write code

The 'with' statement: Example 2

open the file
stringfile = open('text.txt', 'a+')

write to the file:
stringfile.write('Let's see if this works')

read the file
data = stringfile.read()

close the file
stringfile.close()

w/o “with” + write()

open the file
with open('text.txt', 'a+') as stringfile:

write to the file
stringfile.write('Let's see if this works')
read the file
data = stringfile.read()

w/ 'with' version + write()

• What if we forget to close a file? There is a solution to make sure Python automatically
closes the file: the 'with' statement. It is also a more efficient way to write code

The 'with' statement: Example 3

w/o “with” + csv.writer()
import csv

open the file
with open('seeds.csv', 'a+', newline = '') as csvfile:

write to the file
data = csv.writer(csvfile)
data.writerow(['2', 'Conv', '55', '10', '2018'])

w/ 'with' version + csv.writer()

import csv

open the file
csvfile = open('seeds.csv', 'a+', newline = '')

write to the file
data = csv.writer(csvfile)
data.writerow (['2', 'Conv', '55', '10', '2018'])

close the file
csvfile.close()

• Python comes with the OS module that allows your programs to interact with the files in your
computer

Interacting with the file system

• Python comes with the OS module that allows your programs to interact with the files in your
computer

• File systems: The computer drive is organized in a hierarchical structure of files and directories
• Files: contain information (e.g. txt, csv files)
• Directories: these contain files and directories inside of them

Interacting with the file system

• Python comes with the OS module that allows your programs to interact with the files in your
computer

• File systems: The computer drive is organized in a hierarchical structure of files and directories
• Files: contain information (e.g. txt, csv files)
• Directories: these contain files and directories inside of them

• Absolute and relative file paths:
• Absolute file paths are notated by a leading forward slash or drive label. Describes how to access a given file or

directory starting from the root of the file system

Interacting with the file system

In Windows: Z:\AAE875\EclipseWorkspace\ReadFiles\src

• Python comes with the OS module that allows your programs to interact with the files in your
computer

• File systems: The computer drive is organized in a hierarchical structure of files and directories
• Files: contain information (e.g. txt, csv files)
• Directories: these contain files and directories inside of them

• Absolute and relative file paths:
• Absolute file paths are notated by a leading forward slash or drive label. Describes how to access a given file or

directory starting from the root of the file system

• Relative file paths are notated by a lack of leading forward slash. A relative file path is interpreted from the
perspective of your current working directory (cwd)

Interacting with the file system

In Windows: src

In Windows: Z:\AAE875\EclipseWorkspace\ReadFiles\src

• Python comes with the OS module that allows your programs to interact with the files in
your computer

• Why is this important?
• Find/change the current working directory
• Create/remove files
• Code portability across machines (Windows vs Mac paths)
• To get the size of a file
• etc

Interacting with the file system

• What is the current working directory in Python?

• How can you change the current working directory to Z:\AAE875\EclipseWorkspace\ReadFiles

Interacting with the file system

import os

print(os.getcwd())

import os

path = “Z:\AAE875\EclipseWorkspace\ReadFiles”
os.chdir(path)
print(os.getcwd())

Z:\AAE875\EclipseWorkspace\ReadFiles\src

Top Hat Question # 11

What is the CWD after the following code is run

import os

path = “Z:\AAE875\”
os.chdir(path)
print(os.getcwd())

• How can you create another directory? CWD is 'Z:\AAE875\EclipseWorkspace\ReadFiles\src'

• How can you delete tempDir located in the src folder?

Interacting with the file system

import os
creates tempDir in current (src) directory
os.mkdir('tempDir')
creates tempDir in another (ReadFiles) directory
os.mkdir('Z:\AAE875\EclipseWorkspace\ReadFiles\tempDir')

relative path

absolute path

import os
delete tempDir in current (src) directory
os.rmdir('tempDir')

Top Hat Question # 11

What happens in the computer file system when the following code is run?

import os
import datetime

curr_day = datetime.datetime.today()

year = str(curr_day.year)
month = str(curr_day.month)
day = str(curr_day.day)
dot = '.'

os.chdir("Z:\AAE875\Eclipse Workspace")
print(os.getcwd())
dir = year + dot + month + dot + day
os.mkdir(dir)

• How can you delete files (broadly speaking) in Python
• os.remove(path) will remove a file
• os.rmdir(path) will remove an empty directory
• os.rmtree(path) will remove a directory and all its contents

• Note: once you run code with these commands the files are gone (unless you have initialized it
with Git!

Interacting with the file system

• How can we make sure the same path is compatible on both Windows and Mac?

Interacting with the file system

import os

print(os.getcwd())

In Windows:

Z:\AAE875\EclipseWorkspace\ReadFiles\src

• How can we make sure the same path is compatible on both Windows and Mac?

Interacting with the file system

import os

print(os.getcwd())

In Windows:

Z:\AAE875\EclipseWorkspace\ReadFiles\src

import os

print(os.getcwd())

In Mac:

home/AAE875/EclipseWorkspace/ReadFiles/src

• How can we make sure the same path is compatible on both Windows and Mac?

• The os.path module contains functions for handling file paths

Interacting with the file system

In Windows:

Z:\AAE875\EclipseWorkspace\ReadFiles\src

In Mac:

/home/AAE875/EclipseWorkspace/ReadFiles/src

import os

path = os.path.join('Z:\\', 'AAE875', 'EclipseWorkspace', 'ReadFiles', 'src')

This command will create a Windows like path if run on a Windows machine

• To manipulate, process, clean, and analyze data in Python

• What kind of data? Structured data that can contain different data types (you should already
be familiar with this term!)

Why economists use Python?

• A particular way of organizing and storing data efficiently

• Built-in Python data structures:
• Set
• List
• Tuple
• Dictionary

• Third-party Python data structures:
• Vectors
• Matrices
• Arrays
• Data Frames

Data structures

• Vectors are one–dimensional arrays (1 column or row of data, 1 data type only)

• Matrices are two-dimensional arrays (multiple columns and/or rows of data, 1 data type only)

• Arrays are similar to matrices but can be multi-dimensional (1 data type only)

Third-party data structures

• Data Frames are a generalization of matrices but they can store more than 1 type of data

• Finally, compare all these third-party data structures with lists (built-in in Python):

Third-party data structures

• Data visualization
• matplotlib (as plt)
• seaborn (as sns)

• Data transformation
• numpy (as np)

• Descriptive statistics
• scipy (as sp), built on top of numpy
• pandas (as pd)

• Regression analysis
• Statsmodels (as sm)

Essential Python packages for Data Analysis

• Machine learning
• Scikit-learn (as sks)

Essential Python packages for Data Analysis

• A plotting library for Python and its numerical mathematics extension NumPy

• Supports 2D plots only

• You can generate plots, histograms, power spectra, bar charts, errorcharts, scatterplots, etc.,
with just a few lines of code.

• Link: https://matplotlib.org/

Data visualization - Matplotlib

https://matplotlib.org/

• A plotting library for Python based on matplotlib

• Provides a high-level interface for drawing attractive and interactive graphics

• Link: https://seaborn.pydata.org/

Data visualization - Seaborn

https://seaborn.pydata.org/

• A fast and efficient multidimensional array object

• Functions for performing element-wise/mathematical computations with/between arrays

• Tools for reading and writing array-based datasets to disks

• Linear algebra operations, random number generation

• Link: https://numpy.org/

Data transformation - NumPy

https://numpy.org/

• Built on top of numPy (array data structure)

• A collection of packages for scientific computing
• scipy.optimize: function optimizers (minimizers)

• scipy.sparse: sparse matrices and sparse linear system solvers

• scipy.stats: standard continuous and discrete probability distributions, statistical tests, descriptive stats

• Link: https://www.scipy.org/

Descriptive stats - SciPy

https://www.scipy.org/

• Blends the high-performance, array-computing idea of NumPy with the flexible data
manipulation capabilities of spreadsheets and relational databases such as SQL

• Makes it easy to reshape, slice and dice, perform aggregations, select subsets of data, perform
descriptive statistics

• Link: https://pandas.pydata.org/pandas-docs/version/0.22/index.html#module-pandas

Descriptive stats - Pandas

https://pandas.pydata.org/pandas-docs/version/0.22/index.html#module-pandas

• Is a statistical analysis package that includes submodules for:
• Regression analysis, ANOVA, nonparametric methods (kernel density, kernel regression), etc.
• Visualization of regression analysis results

• Link: https://www.statsmodels.org/stable/index.html

Regression analysis - Statsmodels

https://www.statsmodels.org/stable/index.html

• The machine learning toolkit for Python programmers

• Includes submodules for: classification, regression, clustering, model selection, processing, etc.

• Link: https://scikit-learn.org/stable/

Regression analysis - scikit-learn

https://scikit-learn.org/stable/

• Third-party data structures (pictures):
http://venus.ifca.unican.es/Rintro/dataStruct.html

• Info on data analytics packages in Python
Wes McKinney (2018): Python for Data Analysis, Second Edition, O’Reilly Media

References

http://venus.ifca.unican.es/Rintro/dataStruct.html
https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1449319793

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94

