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• List nesting
• List comprehensions
• Dictionary nesting
• Functions and Methods

Chapter 11: More on Lists and Dictionaries



List nesting

# print seed prices, in dollars
# 0: GM-IR  1: GM-HT

prices = [   
[

0, 
56,  # GM-HT      
125 # GM-IR

],
[

47  # GM-IR
121  # GM-HT

]
]
user_input = input('Enter seed pair (Ex: 0 1) -- ').strip()
seed1, seed2 = user_input.split()
print('Prices: %d dollars' % prices[int(seed1)][int(seed2)])



List comprehension

# print seed prices, in dollars
# 0: GM-IR  1: GM-HT

prices = [   
[

0, 
56,  # GM-HT      
125 # GM-IR

],
[

47  # GM-IR
121  # GM-HT

]
]
sum_list = [sum(row) for row in my_list]
print(sum_list)



Dictionary nesting 

# print seed prices, in dollars

prices = {}
prices = {

'2018': {
'GM-IR': [79, 80],
'GM-HT': [120,  87]

},
'2019': {

'GM-IR': [110, 122],
'GM-HT': [65, 89]

}
}
print(prices['2018']['GM-HT'])



• Covered in the first week (Ch 3)

Functions and Methods



• Version control 
• Reading (Input)
• Writing (Output)
• The 'with' statement
• Interacting with the file systems

Chapter 12: IO Files



• Extremely important for project file management!

Version control



• Extremely important for project file management!

Version control

Sadly, I am not able to tell 
you what is the main code, 
what each data set means… 
why I have .csv, .txt, .pdf files 
in the same place with no 
related meaning… I don't 
know!!!

This is me a couple of years ago!



• Extremely important for project file management!

Version control

Just ask me a question about 
this project to see if I know 
what's going on here 

And this is me after grad school



• Extremely important for project file management!
• Allows for collaborations (what if a team of 10 people work on the same project at 

the same time?)

Version control



• Extremely important for project file management!
• Allows for collaborations (what if a team of 10 people work on the same project?)
• Two types of version control:

• Local, in a computer's hard drive (cat-proof but not disaster-proof)
• In the cloud, stored on a server (cat-proof and disaster-proof)

Version control



• What if you work for a company whose work is deemed 'highly confidential'?
• You cannot put any work on a server that is located at some address in Western Europe

Version control - local



• What if you work for a company whose work is deemed 'highly confidential'?
• You cannot put any work on a server that is located at some address in Western Europe
• All you can do is to implement version control in a computer's hard drive
• Allows for collaborations – provided computers are connected to the same network 

Version control - local



• One example of Project Management (suitable for economists)

Version control - local

Literature

• Paper1
• Paper2

Input

• RawData
• FinalData

Output

• Stats
• Regressions

Results

• Report1
• Report2

Script

• Stats
• Regressions
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• How can we track changes made? (yes, you will change your code multiple times!)



• One example of Project Management (suitable for economists)

Version control - local

Literature

• Paper1
• Paper2

Input

• RawData
• FinalData

Output

• Stats
• Regressions

Results

• Report1
• Report2

Script

• Stats
• 06.25.2019
• 06.26.2019
• 06.30.2019

• Regressions

Option 1: Never edit existing code! 
Create a new version and edit there

• How can we track changes made? (yes, you will change your code multiple times!)



• One example of Project Management (suitable for economists)

Version control - local

Literature

• Paper1
• Paper2

Input

• RawData
• FinalData

Output

• Stats
• Regressions

Results

• Report1
• Report2

Script

• Stats
• Regressions

Option 2: use Git, a distributed 
version-control system 
<Topic covered in Lab this week>

• How can we track changes made? (yes, you will change your code multiple times!)



• Code written on your computer's hard drive is cat-proof but not disaster-proof
• Disaster-proof: if your computer explodes there is no way for you to recover the information 
• To disaster-proof your work “push” your local project folder to a server (confidentiality?)
• GitHub offers you this service (i.e. GitHub can host a (Git) repository)

Version control - server



• Code written on your computer's hard drive is cat-proof but not disaster-proof
• Disaster-proof: if your computer explodes there is no way for you to recover the information 
• To disaster-proof your work “push” your local project folder to a server (confidentiality?)
• GitHub offers you this service (i.e. GitHub can host a (Git) repository)
• Keep in mind that Git ≠ GitHub <covered in Lab this week>

Version control - server



Top Hat Question # 1

Set up a project folder in your own computer. What is the best way to do this if 
information is confidential?



Data Analytics

• We are just a few steps away from the world of data analytics with Python



Data Analytics

• We are just a few steps away from the world of data analytics with Python

• What did you learn so far? 
• Fundamental programming concepts (well, if you can get a data analyst job 

w/o good command of these concepts let us know!)
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• Data types in Python (compare this with R)



Data Analytics

• We are just a few steps away from the world of data analytics with Python

• What did you learn so far? 
• Fundamental programming concepts (well, if you can get a data analyst job 

w/o good command of these concepts let us know!)

• Data types in Python (compare this with R)

• Code/Folder organization



Data Analytics

• We are just a few steps away from the world of data analytics with Python

• What else do we need to know?
• How to input/output files in Python (aka IO files)

• Data structures in Python



Data types

Non-primitivePrimitive

StringInteger Float Boolean List Tuple Array Dictionary Set File

numeric data types sequence data types mapping data type

set data type

file data type
I/O



• As economists we often need to read data from a file

• We then need to process that data to produce some useful statistics, regression results, etc.

• Data can come in different forms

• For example data can be in string form, numeric form and/or comma separated

• How to we read it in Python?

Input data 



• Before going into details, 3 commands are useful:

Input data 

# open the file
stringfile = open('workfile' [, 'w'])

# read the file
data = stringfile.read([size])

# close the file
stringfile.close()

https://docs.python.org/3.3/tutorial/inputoutput.html

More information here:

https://docs.python.org/3.3/tutorial/inputoutput.html


• Before going into details, 3 commands are useful:

Input data 

# open the file
stringfile = open(workfile' [, 'w'])

# read the file
data = stringfile.read([size])

# close the file
stringfile.close()

The open() function creates a file object
The file object is named stringfile in this example



• Before going into details, 3 commands are useful:

Input data 

# open the file
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• Before going into details, 3 commands are useful:

Input data 

# open the file
stringfile = open(workfile' [, 'w'])

# read the file
data = stringfile.read([size])

# close the file
stringfile.close()

The open() function creates a file object
Most commonly used with two arguments:

• The first argument contains the file name
• The second argument (optional) defines the mode the file will be used:



• Before going into details, 3 commands are useful:

Input data 

# open the file
stringfile = open(workfile' [, 'w'])

# read the file
data = stringfile.read([size])

# close the file
stringfile.close()

The open() function creates a file object
Most commonly used with two arguments:

• The first argument contains the file name
• The second argument (optional) defines the mode the file will be used:

• r: if only reading (this is the default)
• w: if only writing
• a: opens the file for appending (data is added to the end)
• r+, w+, a+ : opens the data for both reading and writing



• Before going into details, 3 commands are useful:

Input data 

# open the file
stringfile = open(workfile' [, 'w'])

# read the file
data = stringfile.read([size])

# close the file
stringfile.close()

The read() method saves the content of the file object (stringfile) as a 
string



• Before going into details, 3 commands are useful:

Input data 

# open the file
stringfile = open(workfile' [, 'w'])

# read the file
data = stringfile.read([size])

# close the file
stringfile.close()

The read() method saves the content of the file object (stringfile) as a 
string
Size is an optional argument: 



• Before going into details, 3 commands are useful:

Input data 

# open the file
stringfile = open(workfile' [, 'w'])

# read the file
data = stringfile.read([size])

# close the file
stringfile.close()

The read() method saves the content of the file object (stringfile) as a 
string
Size is an optional argument:

• If omitted or negative, the entire data of the file will be read
• If positive, reads up to ?? bytes



• Before going into details, 3 commands are useful:

Input data 

# open the file
stringfile = open(workfile' [, 'w'])

# read the file
data = stringfile.read([size])

# close the file
stringfile.close() Closes the file object (recommended, to save memory)



• Print the data in the file 'text.txt'

Input data – string form

# open the file
stringfile = open('text.txt')

# read the file
data = stringfile.read()

# close the file
stringfile.close()

# print the data
print(data)



• Read all the lines of the 'text.txt' file in a list. Print only the first line of the file

Input data – string form

# open the file
stringfile = open('text.txt')

# read the file
data = stringfile.readlines()

# close the file
stringfile.close()

# print the data
print(data[0])

The readlines() method returns a list of strings
See also the readline() method



Top Hat Question # 2

What is the output?

# open the file
stringfile = open('text.txt')

# read the file
data = stringfile.readlines()

# close the file
stringfile.close()

# print the data
print(data[1])



• Read all the lines of the 'text.txt' file in a list. Print the data

Input data – string form

# open the file
stringfile = open('text.txt')

# read the file
data = stringfile.readlines()

# close the file
stringfile.close()

# print the data
for rows in data:

print(rows)



Top Hat Question # 3

What is the output?

# open the file
stringfile = open('text.txt')

# read the file
data = stringfile.readlines()

# close the file
stringfile.close()

# print the data
for rows in stringfile:

print(rows)



• Read all the lines of the 'numeric.txt' file in a list. Print the average number

Input data – numeric form

# open the file
numfile= open('numeric.txt')

# read the file
data = numfile.readlines()

# close the file
numfile.close()

# compute and print the average 
total = 0
for row in data:

total += int(row)

average = total/len(data)    
print('The average is', average)



• Most often data is organized in a spreadsheet format or database (columns x rows)
• A .CSV file separates data items by comma (cells)
• How do we read such data in Python?

Input data – comma separated form



• Most often data is organized in a spreadsheet format or database (columns x rows)
• A .CSV file separates data items by comma (cells)
• How do we read such data in Python?
• The Python csv module implements classes to read tabular data in CSV format

Input data – comma separated form

import csv

# open the file
csvfile = open('workfile' [,'w', newline = ''])

# read the file
data = csv.reader(filename [,delimiter = ','])

# close the file
csvfile.close()

https://docs.python.org/3/library/csv.html
More information here:

https://docs.python.org/3/library/csv.html


• Most often data is organized in a spreadsheet format or database (columns x rows)
• A .CSV file separates data items by comma
• How do we read such data in Python?
• The Python csv module implements classes to read tabular data in CSV format

Input data – comma separated form

The reader() function in the csv module returns a reader 
object which will iterate over lines in a given .csv file;

import csv

# open the file
csvfile = open('workfile' [,'w', newline = ''])

# read the file
data = csv.reader(filename [,delimiter = ','])

# close the file
csvfile.close()



• Most often data is organized in a spreadsheet format or database (columns x rows)
• A .CSV file separates data items by comma
• How do we read such data in Python?
• The Python csv module implements classes to read tabular data in CSV format

Input data – comma separated form

The reader() function in the csv module returns a reader object 
which will iterate over lines in a given .csv file;

Each row read from the csv file is returned as a list of strings;

import csv

# open the file
csvfile = open('workfile' [,'w', newline = ''])

# read the file
data = csv.reader(filename [,delimiter = ','])

# close the file
csvfile.close()



• Most often data is organized in a spreadsheet format or database (columns x rows)
• A .CSV file separates data items by comma
• How do we read such data in Python?
• The Python csv module implements classes to read tabular data in CSV format

Input data – comma separated form

The reader() function in the csv module returns a reader object 
which will iterate over lines in a given .csv file;

Each row read from the csv file is returned as a list of strings;

A couple of notes on arguments:
• filename is a file object created via open (e.g. csvfile)
• delimiter (optional) specifies the argument used in the csv 

file to separate fields. The default is comma (new cell).

import csv

# open the file
csvfile = open('workfile' [,'w', newline = ''])

# read the file
data = csv.reader(filename [,delimiter = ','])

# close the file
csvfile.close()



• Read each row of the 'seeds.csv' file

Input data – comma separated form

import csv
# open the file
csvfile= open('seeds.csv', 'r+', newline = '')

# read the file
data = csv.reader(csvfile, delimiter = ',')

# print each row
row_no = 1
for row in data:

print('Row #', row_no, ':', row)
row_no += 1

# close the file
csvfile.close()



Top Hat Question # 4

What is the output?

import csv
# open the file
csvfile = open('seeds.csv', 'r+', newline = '')

# read the file
data = csv.reader(csvfile, delimiter = ',')

# print each row
row_no = 1
for row in data:

print('Row #', row_no, ':', row)

# close the file
csvfile.close()



• Read each row of the 'seeds.csv' file. Compute the average of GM prices paid by farmers

Input data – comma separated form

import csv
# open the file
csvfile = open('seeds.csv', 'r+', newline = '')

# read the file
data = csv.reader(csvfile, delimiter = ',')

# print average GM price
total_GMprice = 0
row_num = 0
csvfile.readline() # skips the first row in the csv file

# cont'd
for row in data:

if row[1] == 'Conv':
continue

else:
total_GMprice += int(row[2])
row_num += 1

mean_GMprice = total_GMprice / row_num
print(mean_GMprice)

# close the file
csvfile.close()



Top Hat Question # 5

What is the output?

import csv
# open the file
Csvfile = open('seeds.csv', 'r+', newline = '')

# read the file
data = csv.reader(csvfile, delimiter = ',')

# print average GM price
total_GMprice = 0
row_num = 1
csvfile.readline()
csvfile.readline()

# cont'd

for row in data:
print(row[2])
print(row_num) 

# close the file
csvfile.close()



Top Hat Question # 6

What is the output?

import csv
# open the file
csvfile = open('seeds.csv', 'r+', newline = '')

# read the file
data = csv.reader(csvfile, delimiter = ',')

# close the file
csvfile.close()

# print average GM price
total_GMprice = 0
row_num = 1
csvfile.readline()
csvfile.readline()

# cont'd

for row in data:
row_num += 1
print(row[2])
print(row_num)



Top Hat Question # 7

Compute the average quantity sold of GM seeds? Write code. Use the 'seeds.csv' file



• Before going into details, 3 commands are useful:

# open the file
stringfile = open('workfile' [,'w'])

# write the file
stringfile.write([size])

# close the file
stringfile.close()

Output data – string and/or numeric form



• Before going into details, 3 commands are useful:

The write() method writes a string to a file

# open the file
stringfile = open('workfile' [,'w'])

# write the file
stringfile.write([size])

# close the file
stringfile.close()

Output data – string and/or numeric form



• Before going into details, 3 commands are useful:

Output data – string and/or numeric form

The write() method writes a string to a file
Integers and floating-points must be converted using the str() function

# open the file
stringfile = open('workfile' [,'w'])

# write the file
stringfile.write([size])

# close the file
stringfile.close()



• Output 'Hello World' to a file named “my_output.txt”

# open the file
stringfile = open('my_output.txt', 'w')

# write the file
stringfile.write('Hello world \n')

# close the file
stringfile.close()

Output data – string and/or numeric form



Top Hat Question # 8

What is the output?

# open the file
stringfile = open('my_output.txt', 'w', newline = '')

# write the file
stringfile.write('Hello world \n')
stringfile.write('I know Python \n')

# close the file
stringfile.close()



Top Hat Question # 9

What is the output?

# open the file
stringfile = open('my_output.txt', 'w')

# write the file
stringfile.write('Hello world')
stringfile.write('I know Python')

# close the file
stringfile.close()



• How do we output data in comma separated format in Python?
• The Python csv module implements classes to output tabular data in CSV format

Output data – comma separated form

import csv
# open the file
csvfile = open('workfile' [, 'w', newline = ''])

# write the file
data = csv.writer(filename [, delimiter = ' '])
data.writerow('string1'))
data.writerows(['string1', 'string2'])

# close the file
csvfile.close()

https://docs.python.org/3/library/csv.html
More information here:

https://docs.python.org/3/library/csv.html


• How do we output data in comma separated format in Python?
• The Python csv module implements classes to output tabular data in CSV format

Output data – comma separated form

The writer() function in the csv module returns a writer 
object responsible for converting the user's data into 
delimited strings on the given workfile

import csv
# open the file
csvfile = open('workfile' [, 'w', newline = ''])

# write the file
data = csv.writer(filename [, delimiter = ' '])
data.writerow('string1'))
data.writerows(['string1', 'string2'])

# close the file
csvfile.close()



• How do we output data in comma separated format in Python?
• The Python csv module implements classes to output tabular data in CSV format

Output data – comma separated form

The writer functions writerow() and writerows() can be 
used to write a list of strings into the file as one or 
more rows

import csv
# open the file
csvfile = open('workfile' [, 'w', newline = ''])

# write the file
data = csv.writer(filename [, delimiter = ' '])
string1 = “Hello”
string2 = “world”
data.writerow(string1))
data.writerows([string1, string2])

# close the file
csvfile.close()



Top Hat Question # 10

Add a new row ['2', 'Conv', '55', '10', '2018'] to the file seeds.csv 



• What if we forget to close a file? There is a solution to make sure Python automatically 
closes the file: the 'with' statement. It is also a more efficient way to write code

The 'with' statement: Example 1

# open the file
stringfile = open('text.txt')

# read the file
data = stringfile.read()

# close the file
stringfile.close()

# print the data
print(data)

w/o “with”

# open the file
with open('text.txt') as stringfile:

# read the file
data = stringfile.read()
# print the data
print(data)

w/ 'with' version



• What if we forget to close a file? There is a solution to make sure Python automatically 
closes the file: the 'with' statement. It is also a more efficient way to write code

The 'with' statement: Example 2

# open the file
stringfile = open('text.txt', 'a+')

# write to the file:
stringfile.write('Let's see if this works')

# read the file
data = stringfile.read()

# close the file
stringfile.close()

w/o “with” + write()

# open the file
with open('text.txt', 'a+') as stringfile:

# write to the file
stringfile.write('Let's see if this works')
# read the file
data = stringfile.read()

w/ 'with' version + write()



• What if we forget to close a file? There is a solution to make sure Python automatically 
closes the file: the 'with' statement. It is also a more efficient way to write code

The 'with' statement: Example 3

w/o “with” + csv.writer()
import csv

# open the file
with open('seeds.csv', 'a+', newline = '') as csvfile:

# write to the file
data = csv.writer(csvfile)
data.writerow(['2', 'Conv', '55', '10', '2018'])

w/ 'with' version + csv.writer()

import csv

# open the file
csvfile = open('seeds.csv', 'a+', newline = '')

# write to the file
data = csv.writer(csvfile)
data.writerow (['2', 'Conv', '55', '10', '2018'])

# close the file
csvfile.close()



• Python comes with the OS module that allows your programs to interact with the files in your 
computer

Interacting with the file system



• Python comes with the OS module that allows your programs to interact with the files in your 
computer

• File systems: The computer drive is organized in a hierarchical structure of files and directories
• Files: contain information (e.g. txt, csv files)
• Directories: these contain files and directories inside of them

Interacting with the file system



• Python comes with the OS module that allows your programs to interact with the files in your 
computer

• File systems: The computer drive is organized in a hierarchical structure of files and directories
• Files: contain information (e.g. txt, csv files)
• Directories: these contain files and directories inside of them

• Absolute and relative file paths:
• Absolute file paths are notated by a leading forward slash or drive label. Describes how to access a given file or 

directory starting from the root of the file system

Interacting with the file system

In Windows: Z:\AAE875\EclipseWorkspace\ReadFiles\src



• Python comes with the OS module that allows your programs to interact with the files in your 
computer

• File systems: The computer drive is organized in a hierarchical structure of files and directories
• Files: contain information (e.g. txt, csv files)
• Directories: these contain files and directories inside of them

• Absolute and relative file paths:
• Absolute file paths are notated by a leading forward slash or drive label. Describes how to access a given file or 

directory starting from the root of the file system

• Relative file paths are notated by a lack of leading forward slash. A relative file path is interpreted from the 
perspective of your current working directory (cwd)

Interacting with the file system

In Windows: src

In Windows: Z:\AAE875\EclipseWorkspace\ReadFiles\src



• Python comes with the OS module that allows your programs to interact with the files in 
your computer

• Why is this important?
• Find/change the current working directory
• Create/remove files
• Code portability across machines (Windows vs Mac paths)
• To get the size of a file
• etc

Interacting with the file system



• What is the current working directory in Python?

• How can you change the current working directory to Z:\AAE875\EclipseWorkspace\ReadFiles

Interacting with the file system

import os

print(os.getcwd())

import os

path = “Z:\AAE875\EclipseWorkspace\ReadFiles”
os.chdir(path)
print(os.getcwd())

Z:\AAE875\EclipseWorkspace\ReadFiles\src



Top Hat Question # 11

What is the CWD after the following code is run

import os

path = “Z:\AAE875\”
os.chdir(path)
print(os.getcwd())



• How can you create another directory? CWD is 'Z:\AAE875\EclipseWorkspace\ReadFiles\src'

• How can you delete tempDir located in the src folder?

Interacting with the file system

import os
# creates tempDir in current (src) directory
os.mkdir('tempDir')
# creates tempDir in another (ReadFiles) directory
os.mkdir('Z:\AAE875\EclipseWorkspace\ReadFiles\tempDir')

relative path

absolute path

import os
# delete tempDir in current (src) directory
os.rmdir('tempDir')



Top Hat Question # 11

What happens in the computer file system when the following code is run?

import os
import datetime

curr_day = datetime.datetime.today()

year = str(curr_day.year)
month = str(curr_day.month)
day = str(curr_day.day)
dot = '.'

os.chdir("Z:\AAE875\Eclipse Workspace")
print(os.getcwd())
dir = year + dot + month + dot + day
os.mkdir(dir)



• How can you delete files (broadly speaking) in Python
• os.remove(path) will remove a file
• os.rmdir(path) will remove an empty directory
• os.rmtree(path) will remove a directory and all its contents

• Note: once you run code with these commands the files are gone (unless you have initialized it 
with Git! 

Interacting with the file system



• How can we make sure the same path is compatible on both Windows and Mac?

Interacting with the file system

import os

print(os.getcwd())

In Windows:

Z:\AAE875\EclipseWorkspace\ReadFiles\src



• How can we make sure the same path is compatible on both Windows and Mac?

Interacting with the file system

import os

print(os.getcwd())

In Windows:

Z:\AAE875\EclipseWorkspace\ReadFiles\src

import os

print(os.getcwd())

In Mac:

home/AAE875/EclipseWorkspace/ReadFiles/src



• How can we make sure the same path is compatible on both Windows and Mac?

• The os.path module contains functions for handling file paths

Interacting with the file system

In Windows:

Z:\AAE875\EclipseWorkspace\ReadFiles\src

In Mac:

/home/AAE875/EclipseWorkspace/ReadFiles/src

import os

path = os.path.join('Z:\\', 'AAE875', 'EclipseWorkspace', 'ReadFiles', 'src')

This command will create a Windows like path if run on a Windows machine



• To manipulate, process, clean, and analyze data in Python

• What kind of data? Structured data that can contain different data types (you should already 
be familiar with this term!)

Why economists use Python?



• A particular way of organizing and storing data efficiently

• Built-in Python data structures: 
• Set
• List
• Tuple
• Dictionary

• Third-party Python data structures:
• Vectors
• Matrices
• Arrays
• Data Frames

Data structures



• Vectors are one–dimensional arrays (1 column or row of data, 1 data type only)

• Matrices are two-dimensional arrays (multiple columns and/or rows of data, 1 data type only)

• Arrays are similar to matrices but can be multi-dimensional (1 data type only)

Third-party data structures



• Data Frames are a generalization of matrices but they can store more than 1 type of data 

• Finally, compare all these third-party data structures with lists (built-in in Python):

Third-party data structures



• Data visualization
• matplotlib (as plt)
• seaborn (as sns)

• Data transformation
• numpy (as np)

• Descriptive statistics
• scipy (as sp), built on top of numpy
• pandas (as pd) 

• Regression analysis
• Statsmodels (as sm)

Essential Python packages for Data Analysis



• Machine learning
• Scikit-learn (as sks)

Essential Python packages for Data Analysis



• A plotting library for Python and its numerical mathematics extension NumPy

• Supports 2D plots only

• You can generate plots, histograms, power spectra, bar charts, errorcharts, scatterplots, etc., 
with just a few lines of code.

• Link: https://matplotlib.org/

Data visualization - Matplotlib

https://matplotlib.org/


• A plotting library for Python based on matplotlib

• Provides a high-level interface for drawing attractive and interactive graphics

• Link: https://seaborn.pydata.org/

Data visualization - Seaborn

https://seaborn.pydata.org/


• A fast and efficient multidimensional array object 

• Functions for performing element-wise/mathematical computations with/between arrays

• Tools for reading and writing array-based datasets to disks

• Linear algebra operations, random number generation

• Link: https://numpy.org/

Data transformation - NumPy

https://numpy.org/


• Built on top of numPy (array data structure)

• A collection of packages for scientific computing
• scipy.optimize: function optimizers (minimizers)

• scipy.sparse: sparse matrices and sparse linear system solvers

• scipy.stats: standard continuous and discrete probability distributions, statistical tests, descriptive stats

• Link: https://www.scipy.org/

Descriptive stats - SciPy

https://www.scipy.org/


• Blends the high-performance, array-computing idea of NumPy with the flexible data 
manipulation capabilities of spreadsheets and relational databases such as SQL

• Makes it easy to reshape, slice and dice, perform aggregations, select subsets of data, perform 
descriptive statistics

• Link: https://pandas.pydata.org/pandas-docs/version/0.22/index.html#module-pandas

Descriptive stats - Pandas

https://pandas.pydata.org/pandas-docs/version/0.22/index.html#module-pandas


• Is a statistical analysis package that includes submodules for:
• Regression analysis, ANOVA, nonparametric methods (kernel density, kernel regression), etc.
• Visualization of regression analysis results

• Link: https://www.statsmodels.org/stable/index.html

Regression analysis - Statsmodels

https://www.statsmodels.org/stable/index.html


• The machine learning toolkit for Python programmers

• Includes submodules for: classification, regression, clustering, model selection, processing, etc.

• Link: https://scikit-learn.org/stable/

Regression analysis - scikit-learn

https://scikit-learn.org/stable/


• Third-party data structures (pictures):
http://venus.ifca.unican.es/Rintro/dataStruct.html

• Info on data analytics packages in Python
Wes McKinney (2018): Python for Data Analysis, Second Edition, O’Reilly Media

References

http://venus.ifca.unican.es/Rintro/dataStruct.html
https://www.amazon.com/Python-Data-Analysis-Wrangling-IPython/dp/1449319793
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