
Cornelia Ilin, PhD

Department of Ag & Applied Economics
UW-Madison

Week 3 - Summer 2019

AAE 875 – Fundamentals of Object Oriented
Programming and Data Analytics

• OOP is a very well known concept used to write powerful applications

• As a data analyst you will be required to write code to process the data

• Development in OOP is faster and cheaper; leads to high quality code

• With OOP you describe how a program should operate

• With declarative programming languages you describe what you want to accomplish
without specifying how

OOP in Python

• OOP uses the concept of objects and classes

• A class can be thought as a blueprint for objects that have their own attributes
(characteristics they possess), and methods (actions they perform)

OOP in Python

• An example of a class is the class Dog (don’t think of a particular dog)

• With a class we are trying to explain what a dog is and can do, in general

• Dogs usually have a name and age. There are called instance attributes

• Dogs can also bark. This is a method

OOP in Python

• Let’s talk about two dogs: Maika and Bonnie

• A specific dog is considered an object in OOP

• An object is an instance of the class Dog

• This is the basic principle of OOP

OOP in Python

Remember Exam 1 is on Friday between 10-12 pm.
Don’t relax!

• So Maika and Bonnie belong to the class Dog

• Their attributes are:
• name: [“Maika”, “Bonnie”]
• age: [2, 1]

OOP in Python

• Python is a great programming language that supports OOP

• You can use it to define attributes and methods, which you can later call

• Unlike other OOP languages (e.g. Java), it is based on dynamic typing

• So you don’t need to declare the type of variables and arguments

• Python code is easier to read and intuitive

OOP in Python

• Definition
• Constructor
• Instantiation
• Class, instance, method object
• User-defined methods
• Class vs. instance attributes

Chapter 8: Classes

• Classes provide a high-level approach to organize a program
• Classes are objects containing groups of related variables and functions
• Let's learn from an example:

• Assume we have a database with patient info, such as: age, weight, asthma
• We can create a class (object) Patients with attributes age, weight, asthma
• This can be done using the class keyword and the __init__(self) constructor

Class definition

• Classes provide a high-level approach to organize a program
• Classes are objects containing groups of related variables and functions
• Let's learn from an example:

• Assume we have a database with patient info, such as: age, weight, asthma
• We can create a class (object) Patients with attributes age, weight, asthma
• This can be done using the class keyword and the __init__(self) constructor

Class definition

class Patients:
def __init__(self):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes

Note: use initial capitalization for class names
(e.g. Patients, PatientInfo etc)

In this example attributes are set to 0

• Functions defined within a class are called methods
• The __init__() method is a constructor
• The constructor is a special method with no return type and one required parameter (self)
• It's called when creating an instance of the class (instance = add new entry, e.g. new

patient information)

Class constructor

• One can add additional parameters to the __init__ method (the constructor)

Class constructor

class Patients:
def __init__(self, year, month):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes

• One can add additional parameters to the __init__ method (the constructor)
• These additional parameters can be added as instance attributes (can be accessed later)

Class constructor

class Patients:
def __init__(self, year, month):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes
self.year = year
self.month = month

• One can add additional parameters to the __init__ method (the constructor)
• These additional parameters can be added as instance attributes (can be accessed later)
• Additional parameters can be set to default values

Class constructor

class Patients:
def __init__(self, year = 2019, month = 'January'):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes
self.year = year
self.month = month

• To define a new Patients class variable (i.e. add patient with corresponding health
information, aka instance) use instantiation

• Instantiation is performed by calling the class name, similar to calling a function
• When only the required self parameter is present, then the class call doesn't include any

arguments

Class instantiation

class Patients:
def __init__(self):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes

patient1 = Patients() class instantiation

• To define a new Patients class variable (i.e. add patient with corresponding health
information, aka instance) use instantiation

• Instantiation is performed by calling the class name, similar to calling a function
• When additional parameters are present (with no default values), then the class call includes

arguments for the additional parameters

Class instantiation

class Patients:
def __init__(self, year, month):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes
self.year = year
self.month = month

patient1 = Patients(2017, 'January')
class instantiation when
additional parameters with no
default values are present

• To define a new Patients class variable (i.e. add patient with corresponding health
information, aka instance) use instantiation

• Instantiation is performed by calling the class name, similar to calling a function
• When additional parameters are present (with default values), then the class call doesn't

include arguments for the additional parameters

Class instantiation

class Patients:
def __init__(self, year = 2019, month = 'January'):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes
self.year = year
self.month = month

patient1 = Patients()
class instantiation when
additional parameters with
default values are present

• To define a new Patients class variable (i.e. add patient with corresponding health
information, aka instance) use instantiation

• Instantiation is performed by calling the class name, similar to calling a function
• One can add a mix of additional parameters w/ and w/o default values. Arguments w/o

default values must come first, and must be in order!

Class instantiation

class Patients:
def __init__(self, month, year = 2019):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes
self.year = year
self.month = month

patient1 = Patients('January')

• To define a new Patients class variable (i.e. add patient with corresponding health
information, aka instance) use instantiation

• Instantiation is performed by calling the class name, similar to calling a function
• The instantiation operation automatically calls the constructor (__init__ method)

Class instantiation

class Patients:
def __init__(self):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes

patient1 = Patients()

instantiation calls the constructor
to create a new instance (self) of
the class

• To define a new Patients class variable (i.e. add patient with corresponding health
information, aka instance) use instantiation

• Instantiation is performed by calling the class name, similar to calling a function
• The instantiation operation automatically calls the constructor (__init__ method)
• The required parameter of the __init__ method (self) references each new instance created

Class instantiation

class Patients:
def __init__(self):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes

patient1 = Patients()

default parameter is 'self'

• To define a new Patients class variable (i.e. add patient with corresponding health
information, aka instance) use instantiation

• Instantiation is performed by calling the class name, similar to calling a function
• The instantiation operation automatically calls the constructor (__init__ method)
• The required parameter of the __init__ method (self) references each new instance created

Class instantiation

class Patients:
def __init__(self):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes

patient1 = Patients()

set attribute values for the instance created above
patient1.age, patient1.weight, patient1.asthma = 30, 60, 0

attributes are accessed using the dot
notation

Top Hat Question # 1

What is a class?

Answer:

Top Hat Question # 2

What is __init__?

Answer:

Top Hat Question # 3

What is an instance of a class?

Answer:

Top Hat Question # 4

What is the output?

class Patients:
def __init__(self, year = 2020, month):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes
self.year = year
self.month = month

patient1 = Patients('January')
print(patient1.month)

• A class object creates new class instances
• An instance object represent a single instance of a class

Class vs. instance object

Class object

Instance object

• A class definition may include user-defined methods
• Example: update patient weight after each visit

User-defined methods

class Patients:
def __init__(self):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes

def update_health(self):
self.weight = int(input('Introduce patient weight: '))

• A class definition may include user-defined methods
• Example: update patient weight after each visit

• The parameter of the user-defined method has to match the required parameter of the
constructor method!

User-defined methods

class Patients:
def __init__(self):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes

def update_health(self):
self.weight = int(input('Introduce patient weight: '))

• How do we call a user-defined method? (E.g. how do we update the weight of a patient?)

User-defined methods

class List:
def __init__(self):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes

def update_health(self):
self.weight = int(input('Introduce patient weight: '))

patient1 = Patients()
patient1.age = 30
patient1.weight = 60
patient1.asthma = 0

patient1.update_health() No argument was provided!

Top Hat Question # 5

What is patient1's asthma status if user input is 1?

class Patients:
def __init__(self):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes

def update_health():
self.asthma = int(input('Introduce patient asthma status (1 = yes): ')

patient1 = Patients()
patient1.age = 30
patient1.weight = 60
patient1.asthma = 0
patient1.update_health()

Top Hat Question # 6

Is the method update_health() correctly defined?

class Patients:
def __init__(self, year):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes
self.year = year

def update_health(self):
self.asthma = int(input('Introduce patient asthma status (1 = yes): ')

patient1 = Patients()
patient1.age = 30
patient1.weight = 60
patient1.asthma = 0
patient1.update_health()

• A class attribute is shared among all instances of that class
• Defined within the scope of the class

• An instance attribute can be unique to each instance
• Defined using dot notation from within a method or from outside of the class scope
• When using dot notation the instance namespace is searched first followed by the class namespace

Class vs. Instance attributes

class Patients:
year = 2018
def __init__(self):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes

patient1 = Patients()
patient2 = Patients()
patient1.age, patient1.weight, patient1.asthma = 30, 60, 0
patient2.age, patient2.weight, patient2.asthma = 28, 55, 1

Class attribute

Instance attributes

• A class attribute is shared among all instances of that class
• Defined within the scope of the class

• An instance attribute can be unique to each instance
• Defined using dot notation from within a method or from outside of the class scope
• When using dot notation the instance namespace is searched first followed by the class namespace

• Good practice: avoid using same names for class and instance attributes!!

Class vs. Instance attributes

• How we can use class attributes?

Class vs. Instance attributes

class Patients:
year = 2018
def __init__(self):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes

patient1 = Patients()
patient2 = Patients()
patient1.age, patient1.weight, patient1.asthma = 30, 60, 0
patient2.age, patient2.weight, patient2.asthma = 28, 55, 1
print(patient1.year)
patient1.year = 2019
print(patient1.year)

Top Hat Question # 7

How many attributes does patient1 has? How many patient2?

class Patients:
year = 2018
def __init__(self):

self.age = 0
self.weight = 0 #in Kg
self.asthma = 0 #1 if yes

patient1 = Patients()
patient2 = Patients()
patient1.age, patient1.weight, patient1.asthma = 30, 60, 0
patient2.age, patient2.weight, patient2.asthma = 28, 55, 1
print(patient1.year)
patient1.year = 2019
print(patient1.year)

An example w/ classes
class Student(object):

def __init__(self, name, age, gender, level, grades=None):
self.name = name
self.age = age
self.gender = gender
self.level = level
self.grades = grades or {}

def setGrade(self, course, grade):
self.grades[course] = grade

def getGrade(self, course):
return self.grades[course]

def getGPA(self):
return sum(self.grades.values())/len(self.grades)

Define some students
john = Student("John", 12, "male", 6, {"math":3.3})
jane = Student("Jane", 12, "female", 6, {"math":3.5})

Now we can get to the grades easily
print(john.getGPA())
print(jane.getGPA())

Same example w/ dictionaries
def calculateGPA(gradeDict):

return sum(gradeDict.values())/len(gradeDict)

students = {}
We can set the keys to variables so we might minimize typos
name, age, gender, level, grades = "name", "age", "gender", "level", "grades"
john, jane = "john", "jane"
math = "math"
students[john] = {}
students[john][age] = 12
students[john][gender] = "male"
students[john][level] = 6
students[john][grades] = {math:3.3}

students[jane] = {}
students[jane][age] = 12
students[jane][gender] = "female"
students[jane][level] = 6
students[jane][grades] = {math:3.5}

At this point, we need to remember who the students are and where the grades are stored. Not a huge deal, but avoided by OOP.
print(calculateGPA(students[john][grades]))
print(calculateGPA(students[jane][grades]))

References

• OOP in Python:

https://www.datacamp.com/community/tutorials/python-oop-tutorial

• An example w/ and w/o classes:
https://stackoverflow.com/questions/33072570/when-should-i-be-using-
classes-in-python

https://www.datacamp.com/community/tutorials/python-oop-tutorial
https://stackoverflow.com/questions/33072570/when-should-i-be-using-classes-in-python

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38

