
Cornelia Ilin, PhD

Department of Ag & Applied Economics

UW-Madison

Week 2 - Summer 2019

AAE 875 – Fundamentals of Object Oriented
Programming and Data Analytics

• While loops

• For loops

• Break and continue statements

• Nested loops

Chapter 5: Loops

While loops

while condition:
loop statement 1
.
.
loop statement N

• Repeatedly executes the block of code (loop body) as long as the loop condition is True

• Each execution of the loop body is called an iteration

• Do not write infinite loops (!!): it's a loop that will always execute because the condition is always True

condition

Loop
statement block

Following
statements

true

false

While loops

initial
while condition:

loop statement 1
.
.
loop statement N
increment

• When a loop should iterate for a specific number of times, add an initial variable (outside the loop body)
and an increment (in the loop body)

• Forgetting the increment statement will result in an infinite loop!
• Note: incrementation is performed manually using the increment statement!

condition

Loop
statement block

Initial

true

false

Following
statements

increment

What is the output?

Top Hat Question # 1

iter = 0

while iter <= 3:
if(iter + 1 == 1):

print('The', iter+1, '\'st iteration')
elif(iter +1 == 2):

print('The', iter+1, '\'nd iteration')
elif(iter + 1 == 3):

print('The', iter+1, '\'rd iteration')
else:

print('The', iter+1, '\'th iteration')
iter += 1

print('goodbye!')

What is the output?

Top Hat Question # 2

iter = 0

while iter <= 3:
if(iter + 1 == 1):

print('The', iter+1, '\'st iteration')
elif(iter +1 == 2):

print('The', iter+1, '\'nd iteration')
elif(iter + 1 == 3):

print('The', iter+1, '\'rd iteration')
else:

print('The', iter+1, '\'th iteration')

print('the program has executed', iter, 'iterations')

What is the last number output?

Top Hat Question # 3

iter = 0

while iter != 5:
print(iter, end = ' ')
iter -= 2

print('goodbye!')

For loops

for variable in container:
loop statement 1
.
.
loop statement N

condition

Loop
statement block

initial

true

false

• A for loop statement loops over each element in a container one at a time

• With each iteration, the next element in the container is assigned to a variable

• The container in the for loop statement can be a list, tuple, string, or dictionary

Following
statements

increment

iteration ≤ len(container)-1

For loops

for variable in container:
loop statement 1
.
.
loop statement N

condition

Loop
statement block

initial

true

false

• Note 1: no need to define the initial statement! Initial value automatically starts at 0 (i.e. index 0 in the container)
• Note 2: no need to define an increment statement! The loop automatically moves to the next increment until all

elements in the container have been looped over.

Following
statements

increment

iteration ≤ len(container)-1

For loops: Example 1 – tracing

• What is the name of the container?
• What is the data type of the container?
• What is the value of variable name at iteration 1?

aae_class = ['AAE 635', 'AAE 636', 'AAE 875']

for name in aae_class:
print(name)

For loops: Example 1 – tracing

• What is the name of the container?
• What is the data type of the container?
• What is the value of variable name at iteration 1?

aae_class = ['AAE 635', 'AAE 636', 'AAE 875']

for name in aae_class:
print(name)

Iteration Index in
container

Value of
'name'

Output

0 0 'AAE 635' AAE 635

For loops: Example 1 – tracing

• What is the name of the container?
• What is the data type of the container?
• What is the value of variable name at iteration 1?

aae_class = ['AAE 635', 'AAE 636', 'AAE 875']

for name in aae_class:
print(name)

Iteration Index in
container

Value of
'name'

Output

0 0 'AAE 635' AAE 635

1 1 'AAE 636' AAE 635
AAE 636

For loops: Example 1 – tracing

• What is the name of the container?
• What is the data type of the container?
• What is the value of variable name at iteration 1?

aae_class = ['AAE 635', 'AAE 636', 'AAE 875']

for name in aae_class:
print(name)

Iteration Index in
container

Value of
'name'

Output

0 0 'AAE 635' AAE 635

1 1 'AAE 636' AAE 635
AAE 636

2 2 'AAE 875' AAE 635
AAE 636
AAE 875

For loops

for variable in reversed(container):
loop statement 1
.
.
loop statement N

• One can use the built-in reversed() function to read the elements in the container in reverse order
• The loop starts from the last elements and ends with the first element

For loops and range()

• While loops are used to count for a specific number of iterations
• For loops are used to iterate over all elements of a container
• However, the built-in range() function allows for counting in for loops as well

for i in range():
loop statement 1
.
.
loop statement N

condition

Loop
statement block

Initial
iteration

true

false

Following
statements

increment
iteration

For loops and range()

• range(stop) -> the default start value is 0
• range(start, stop [, step]) -> so range() can take up to 3 arguments
• Note: the stop value is not included in the generated sequence

for i in range():
loop statement 1
.
.
loop statement N

condition

Loop
statement block

Initial
iteration

true

false

Following
statements

increment
iteration

iteration ≤ stop val-1

For loops and range()

• When range() is called a range type object is created
• The range type is an immutable sequence type
• Usually used as part of a for loop statement

for i in range():
loop statement 1
.
.
loop statement N

condition

Loop
statement block

Initial
iteration

true

false

Following
statements

increment
iteration

iteration ≤ stop val-1

What is the output?

Top Hat Question # 4

for i in range(10, 20, 2):
print(i)

What is the output?

Top Hat Question # 5

for i in range(0, 20, 2):
print(i)

While vs. For loops

• Both while and for loops care be used to count a specific number of loop iterations
• A for loop combined with range() is preferred over while loops
• While loops can become stuck in an infinite loop if one forgets the increment statement

for i in range():
loop statement 1
.
.
loop statement N

initial
while (condition):

loop statement 1
.
.
loop statement N
increment

While vs. For loops

• Both while and for loops care be used to count a specific number of loop iterations
• A for loop combined with range() is preferred over while loops
• While loops can become stuck in an infinite loop if one forgets the increment statement
• How do we pick a loop?

for i in range():
loop statement 1
.
.
loop statement N

initial
while (condition):

loop statement 1
.
.
loop statement N
increment

While vs. For loops

• While loops: when the number of iterations is not known in advance (e.g. depends on user input)

• For loops: when the number of iterations is known in advance (e.g. summing from a to b)

Loop statements

• break – exits the loop
• continue – jumps to the next iteration

Loop statements: Example 1 - tracing

for i in range(10):
if i > 7:

break
if i % 2 == 0:

print(i, end = ' ')

i Output

0 0

Loop statements: Example 1 - tracing

for i in range(10):
if i > 7:

break
if i % 2 == 0:

print(i, end = ' ')

i Output

0 0

1

Loop statements: Example 1 - tracing

for i in range(10):
if i > 7:

break
if i % 2 == 0:

print(i, end = ' ')

i Output

0 0

1

2 0 2

Loop statements: Example 1 - tracing

for i in range(10):
if i > 7:

break
if i % 2 == 0:

print(i, end = ' ')

i Output

0 0

1

2 0 2

3

Loop statements: Example 1 - tracing

for i in range(10):
if i > 7:

break
if i % 2 == 0:

print(i, end = ' ')

i Output

0 0

1

2 0 2

3

4 0 2 4

Loop statements: Example 1 - tracing

for i in range(10):
if i > 7:

break
if i % 2 == 0:

print(i, end = ' ')

i Output

0 0

1

2 0 2

3

4 0 2 4

5

Loop statements: Example 1 - tracing

for i in range(10):
if i > 7:

break
if i % 2 == 0:

print(i, end = ' ')

i Output

0 0

1

2 0 2

3

4 0 2 4

5

6 0 2 4 6

Loop statements: Example 1 - tracing

for i in range(10):
if i > 7:

break
if i % 2 == 0:

print(i, end = ' ')

i Output

0 0

1

2 0 2

3

4 0 2 4

5

6 0 2 4 6

7

Loop statements: Example 1 - tracing

for i in range(10):
if i > 7:

break
if i % 2 == 0:

print(i, end = ' ')

i Output

0 0

1

2 0 2

3

4 0 2 4

5

6 0 2 4 6

7

8

What is the output?

Top Hat Question # 6

for i in range(10):
if i > 7:

break
if i % 2 == 0:

continue
print(i, end = ' ')

Nested loops

• Used for multidimensional problems

• Allow for repetitive tasks for every iteration

• Example: usually data comes in spreadsheet form; we should be able to read each line and column.

for n in range(num_col):
for m in range(num_rows):

inner loop statement 1
.
.

inner loop statement N
outer loop statement 1
.
.
outer loop statement N

outer loop

inner loop

Nested loops: Example 1 - tracing

print a 2 x 3 matrix
desired output is:
a00 a01 a02
a10 a11 a12

for n in range(2):
for m in range(3):

print('a', end = '')
print(n, end = '')
print(m, end = ' ')

print()

Iteration n(column) m(row) Output

0 0 0 a00

1 0 1 a00 a01

2 0 2 a00 a01 a02

3 1 0 a00 a01 a02
a10

4 1 1 a00 a01 a02
a10 a11

5 1 2 a00 a01 a02
a10 a11 a12

Nested loops: Example 1 – memory rep

print a 2 x 3 matrix
desired output is:
a00 a01 a02
a10 a11 a12

for n in range(2):
for m in range(3):

print('a', end = '')
print(n, end = '')
print(m, end = ' ')

print()

Variable names

n

Objects in memory

99

97

0

m 0

a00

Global space Heap space

Output

Nested loops: Example 1 – memory rep

print a 2 x 3 matrix
desired output it:
a00 a01 a02
a10 a11 a12

for n in range(2):
for m in range(3):

print('a', end = '')
print(n, end = '')
print(m, end = ' ')

print()

Variable names

n

Objects in memory

99

97

1

m 0

a00 a01

Global space Heap space

Output

Nested loops: Example 1 – memory rep

print a 2 x 3 matrix
desired output it:
a00 a01 a02
a10 a11 a12

for n in range(2):
for m in range(3):

print('a', end = '')
print(n, end = '')
print(m, end = ' ')

print()

Variable names

n

Objects in memory

99

97

2

m 0

a00 a01 a02

Global space Heap space

Output

Nested loops: Example 1 – memory rep

print a 2 x 3 matrix
desired output it:
a00 a01 a02
a10 a11 a12

for n in range(2):
for m in range(3):

print('a', end = '')
print(n, end = '')
print(m, end = ' ')

print()

Variable names

n

Objects in memory

99

97

0

m 1

a00 a01 a02
a10

Global space Heap space

Output

Nested loops: Example 1 – memory rep

print a 2 x 3 matrix
desired output it:
a00 a01 a02
a10 a11 a12

for n in range(2):
for m in range(3):

print('a', end = '')
print(n, end = '')
print(m, end = ' ')

print()

Variable names

n

Objects in memory

99

97

1

m 1

a00 a01 a02
a10 a11

Global space Heap space

Output

Nested loops: Example 1 – memory rep

print a 2 x 3 matrix
desired output it:
a00 a01 a02
a10 a11 a12

for n in range(2):
for m in range(3):

print('a', end = '')
print(n, end = '')
print(m, end = ' ')

print()

Variable names

n

Objects in memory

99

97

2

m 1

a00 a01 a02
a10 a11 a12

Global space Heap space

Output

While loops with else

while (condition):
true statement 1
.
.
true statement N

else:
false statement 1
.
.
false statement N

condition

true
statement block

Initial

true

false

false
statements

increment

following
statements

While loops with else: Example 1

iter = 0

while iter <= 5:
print(iter, end = ' ')
iter += 2

else:
print ('goodbye')

For loops with else

for variable in container:
loop statement 1
.
.
loop statement N

else:
loop statement 1
.
.
loop statement N

condition

Loop
statement block

initial

true

false

following
statements

increment

iteration ≤ len(container)-1

else
statements

For loops with else: Example 1

aae_class = ['AAE 635', 'AAE 636', 'AAE 875']

for name in aae_class:
print(name)

else:
print('you are done')

print('goodbye')

Multiple assignment

the following statements:
AAE635 = 'Fall'
AAE636 = 'Fall'
AAE875 = 'Summer'

can be written as:
AAE635, AAE636, AAE875 = ['Fall', 'Fall', 'Summer']

The built-in enumerate function

• enumerate(inerrable object, start = 0) – returns a tuple containing a count (from start which defaults to
0) and the values obtained from iterating over inerrable object

aae_classes = ['AAE635', 'AAE636', 'AAE875']
result = list(enumerate(aae_classes))
print(result) [(0, 'AAE635'), (1, 'AAE636'), (2, 'AAE875')]

aae_classes = ['AAE635', 'AAE636', 'AAE875']
result = list(enumerate(aae_classes, start = 1))
print(result) [(1, 'AAE635'), (2, 'AAE636'), (3, 'AAE875')]

The built-in enumerate function

• enumerate(inerrable object, start = 0) – returns a tuple containing a count (from start which defaults to
0) and the values obtained from iterating over inerrable object

aae_classes = ['AAE635', 'AAE636', 'AAE875']

for (index, classes) in enumerate(aae_classes):
print('Class at position', index, 'is', classes) Class at position 0 is AAE635

Class at position 1 is AAE636
Class at position 2 is AAE875

• In the example above, the for loop unpacks the tuple yielded by enumerate(aae_classes)

Top Hat Question # 7

What is the output?

aae_classes = ['AAE635', 'AAE636', 'AAE875']

for (value) in enumerate(aae_classes):
print('Class at position x is', value)

Top Hat Question # 8

What is the output?

aae_classes = ['AAE635', 'AAE636', 'AAE875']

for (index, class) in enumerate(aae_classes):
print('Class at position', index, 'is', class)

• Definition

• Why use a function?

• Structure

• Calling functions

• More on functions

• Parameters

• Arguments

• Function comments

Chapter 6: Functions

Definition

• Evolved from mathematical functions: g(x) = 3x + 3

• A function is defined by (a) name, and (b) a block of statements

• Can have multiple parameters, but only a single return object

• A couple of built-in Python functions (e.g. abs(), float(), int(), reversed(). Other examples?

• A function is also an object in Python

Why use a function?

• Abstraction: modular design (divide a code into several functions that can be tested
separately)

• Improve code readability

• Avoids redundant code. Why copy-and-paste when you can create a function and call it
multiple times?

Structure

def function_name(par1, par2, …):
body

Function terminology:
• function_name: use lowercase letters and underscores (e.g. average_price)
• definition: the name and the block of statements (body)
• return statement: the body can include a return statement
• par1, par2,…: input specified in a function definition

A new object of type
function is created with
the function_name bound
to that object

Structure: Example 1

Function terminology:
• function_name: use lowercase letters and underscores (e.g. average_price)
• definition: the name and the block of statements
• return statement: the body can include a return statement
• price1, price2,…: input specified in a function definition

def mean_prices(price1, price2):
mean = (price1 + price2)/2 No return value

Structure: Example 2

Function terminology:
• function_name: use lowercase letters and underscores (e.g. average_price)
• definition: the name and the block of statements
• return statement: the body can include a return statement.
• price1, price2,…: input specified in a function definition

More on return statement
• A function can only return a single object!
• That single object can be a variable or a container (a list or tuple) whose return value can be accessed by

unpacking it

def mean_prices(price1, price2):
return (price1 + price2)/2

Top Hat Question # 9

What is the output?

def mean_age(age1, age2)
mean = (age1 + age2)/2

Top Hat Question # 10

Is the following a valid function definition?

def mean_age(age1 + 5, age2):
return (age1 + age2)/2

Top Hat Question # 10

Is the following a valid function definition?

A parameter cannot be an expression! Syntax error

def mean_age(age1 + 5, age2):
return (age1 + age2)/2

Calling functions

Function call terminology:
arg1, arg2,…: a value provided to a function parameter during a function call;

arguments are assigned to function's parameters by position or name

function_name(arg1, arg2, …)
An invocation of the
function name,
causes the function
object to execute a
call operation

Calling functions: Example 1

Using the arguments provided, the function is called and evaluated to the
return value of the function

A return statement can be placed anywhere in the body of the loop

def mean_prices(price1, price2):
return (price1 + price2)/2

mean_prices(50, 70)

Top Hat Question # 11

Is the following a valid function call?

def mean_age(age1, age2)
return (age1 + age2)/2

mean_age(10 + 2, 5)

Top Hat Question # 11

Is the following a valid function call?

An argument can be an expression!

def mean_age(age1, age2)
return (age1 + age2)/2

mean_age(10 + 2, 5)

Top Hat Question # 12

Is the following a valid function call?

def mean_age(age1, age2)
return (age1 + age2)/2

mean_age(10 + 2)

Top Hat Question # 12

Is the following a valid function call?

An argument can be an expression, but when calling a function one needs to
provide a value for each parameter. Syntax error.

def mean_age(age1, age2)
return (age1 + age2)/2

mean_age(10 + 2)

Calling functions: Example 2

Using the arguments provided, the function is called and evaluated to the return
value of the function. If no return value is specified then None is returned

def mean_prices(price1, price2):
mean = (price1 + price2)/2

mean_prices(50, 70)

Calling functions: Example 1 – memory rep

def mean_prices(price1, price2):
return (price1 + price2)/2

mean_prices

Variable names Objects in memory

The function body is stored in
compiled form on the heap

Global space Heap space

compiled
function

code

96

Calling functions: Example 1 – memory rep

def mean_prices(price1, price2):
return (price1 + price2)/2

mean_prices(50,70)

The function call jumps execution to
the function statements Call frame

mean_prices

price1

50 price2

Return
value

mean_prices 96

Variable names Objects in memory

The function body is stored in
compiled form on the heap

Global space Heap space

70

60.0

50

99

98

97

Calling functions: Example 1 – memory rep

def mean_prices(price1, price2):
mean = (price1 + price2)/2

mean_prices(50,70)

The function call jumps execution to
the function statements Call frame

mean_prices

price1

price2

Return
value

mean_prices

Variable names

Global space

mean

50

96

Objects in memory

The function body is stored in
compiled form on the heap

Heap space

70

60.0

50

99

98

97

None 100

Global vs. Heap space. Call frame

• Global space:
• What you 'start with'

• Stores global variables, modules, and functions

• Lasts until you quit Python

• Heap space:
• Where objects are stored

• Have to access indirectly

• Call frames:
• Stores the variables in function call (these variables are stored locally, aka local variables)

• Deleted when call done!

Calling functions: Example 3 – memory rep

def mean_prices(price1, price2):
mean = (price1 + price2)/2

def mean_temp(temp1, temp2):
mean = (temp1 + temp2)/2

mean_prices

Variable names Objects in memory

The function body is stored in
compiled form on the heap

Global space Heap space

compiled
function

code

mean_temp The function body is stored in
compiled form on the heap

94

93

Calling functions: Example 3 – memory rep

def mean_prices(price1, price2):
mean = (price1 + price2)/2

def mean_temp(temp1, temp2):
mean = (temp1 + temp2)/2

mean_prices(50,70)
mean_temp(20,40)

Call frame

price1

price2

Return
value

mean_prices

100

Variable names Objects in memory

The function body is stored in
compiled form on the heap

Global space Heap space

50

60.0 mean

70

mean_prices
95

mean_temp The function body is stored in
compiled form on the heap

None

98

97

96

94

93

Calling functions: Example 3 – memory rep

def mean_prices(price1, price2):
mean = (price1 + price2)/2

def mean_temp(temp1, temp2):
mean = (temp1 + temp2)/2

mean_prices(50,70)
mean_temp(20,40)

Call frame

mean_prices

Variable names

Global space

mean_temp

Everything was deleted when
the call to mean_prices() was
done

100

Objects in memory

The function body is stored in
compiled form on the heap

Heap space

95

The function body is stored in
compiled form on the heap

98

97

96

94

93

Calling functions: Example 3 – memory rep

def mean_prices(price1, price2):
mean = (price1 + price2)/2

def mean_temp(temp1, temp2):
mean = (temp1 + temp2)/2

mean_prices(50,70)
mean_temp(20,40)

Call frame

mean_prices

Variable names

Global space

mean_temp

mean_temp

Everything was deleted when
the call to mean_prices() was
done

100

Objects in memory

The function body is stored in
compiled form on the heap

Heap space

20

30.0

40

95

The function body is stored in
compiled form on the heap

None

98

97

96

94

93

temp1

temp2

Return
value

mean

More on functions

• Can be used in assignment statements (remember functions are objects!)

def mean_prices(price1, price2):
mean = (price1 + price2)/2

mean_prices(50,70)

my_function = mean_prices
Calling my_function() is the same as
calling mean_prices(). Both functions
reference to the same object

More on functions

• Can be used in assignment statements (remember functions are objects!)

• The body of a function can include nested function calls

def mean_prices(price1, price2):
mean = (price1 + price2)/2
user_input = int(input('Introduce quantity:'))

The input() function is nested in the
mean_prices() function

More on functions

• Can be used in assignment statements (remember functions are objects!)

• The body of a function can include nested function calls

• At least one statement is required in the body of a function

• Dynamic typing vs. static typing

• Function stubs: pass, raise NotImplementedError, print and return -1 (Adam to add more
on this in the lab)

More on functions: Variable scope

• A code block in Python is any number of statements after a semicolon

• The scope of a variable is the region of code where it can be used

• A variable's scope is limited to the code block in which it's declared

• E.g. for a variable created inside a function, the variable scope is limited to inside that function

• A variable can only be used after it's declared

More on functions: Variable scope

• Two types of variables:
• Local: defined inside a function; cannot be used outside the function

• Global: defined outside a function; can be used at any time, including inside of functions

seed_type = 'GM'

def mean_prices(price1, price2):
mean = (price1 + price2)/2

mean_prices(50,70)

seed_type is global variable

'price1', 'price2', 'mean' are local variables
(stored in the function's call frame)

More on functions: Variable scope

• Two types of variables:
• Local: defined inside a function; cannot be used outside the function

• Global: defined outside a function; can be used at any time, including inside of functions

seed_type = 'GM'

def mean_prices(price1, price2):
mean = (price1 + price2)/2
global seed_type
seed_type = 'Conv'

mean_prices(50,70)

Must use a global statement to change the
value of a global variable inside of a function;
seed_type is not created locally in this case

Top Hat Question # 13

What happens in the memory of the computer when the following code is run?

seed_type = 'GM'

def mean_prices(price1, price2):
mean = (price1 + price2)/2

mean_prices(50,70)

Top Hat Question # 14

What is the output?

seed_type = 'GM'

def mean_prices(price1, price2):
mean = (price1 + price2)/2
seed_type = 'Conv'

mean_prices(50,70)
print(seed_type)

Top Hat Question # 15

What is the output?

seed_type = 'GM'

def mean_prices(price1, price2):
mean = (price1 + price2)/2
global seed_type
seed_type = 'Conv'

mean_prices(50,70)
print(seed_type)

Parameters

def function_name(par1, par2, …):
body

More on function parameters:
• Scope: considered as variables within the body of the function (cannot be used outside the function)
• Initialized: at the moment of the function call

Arguments

Passing functions as arguments can improve the readability of the code!

function_name(arg1, arg2, …)

def mean_prices(price1, price2):
return (price1 + price2)/2

def total_amount(price, quantity):
return price * quantity

total_payment = total_amount(mean_prices(2, 4), 20)
print('Total payment is: ', total_payment)

Top Hat Question # 16

What is the output of the following function:

def mean_prices(price1, price2):
return (price1 + price2)/2

def total_amount(price, quantity):
amount = price * quantity

total_payment = total_amount(mean_prices(2, 4), 20)
print('Total payment is: ', total_payment)

Top Hat Question # 16

What is the output of the following function:

Answer: the print() function prints None. Why? Use pythontutor to track the code

def mean_prices(price1, price2):
return (price1 + price2)/2

def total_amount(price, quantity):
amount = price * quantity

total_payment = total_amount(mean_prices(2, 4), 20)
print('Total payment is: ', total_payment)

No return value

Arguments: mutability

• What happens if we modify a function's argument that is referenced elsewhere in the
program?

• Depends on the type of the object:
• If immutable (e.g. string or integer): the modification is limited to inside of the function

• If mutable (e.g. lists): the modification is not limited to inside the function; the modification will affect any
other variables in the program that reference the same object

Arguments: mutability Ex 1 – Memory rep

def mean_prices(price1, price2):
price1 += 5
mean = (price1 + price2)/2

price_IR = 70
price_HT = 50

mean_prices(price_IR, price_HT)
print(price_IR)

mean_prices

Variable names

Global space

100

Objects in memory

Heap space

98

97

96

The function body is stored in
compiled form on the heap

95

92

94

93

Arguments: mutability Ex 1 – Memory rep

mean_prices

Variable names

Global space

100

Objects in memory

Heap space

98

97

96

price_IR

price_HT

The function body is stored in
compiled form on the heap

70

50

95

92

94

93

def mean_prices(price1, price2):
price1 += 5
mean = (price1 + price2)/2

price_IR = 70
price_HT = 50

mean_prices(price_IR, price_HT)
print(price_IR)

Arguments: mutability Ex 1 – Memory rep

mean_prices

Variable names

Global space

mean_prices

100

Objects in memory

Heap space

98

97

96
price1

price2

Return
value

mean

price_IR

price_HT

The function body is stored in
compiled form on the heap

70

50

95

92

94

93

def mean_prices(price1, price2):
price1 += 5
mean = (price1 + price2)/2

price_IR = 70
price_HT = 50

mean_prices(price_IR, price_HT)
print(price_IR) Call frame

Arguments: mutability Ex 1 – Memory rep

mean_prices

Variable names

Global space

mean_prices

100

Objects in memory

The function body is stored in
compiled form on the heap

Heap space

70

50

95

98

97

96

92

price1

price2

Return
value

mean

price_IR

price_HT

75

94

93

def mean_prices(price1, price2):
price1 += 5
mean = (price1 + price2)/2

price_IR = 70
price_HT = 50

mean_prices(price_IR, price_HT)
print(price_IR) Call frame

60.0

None

Arguments: mutability Ex 1 – Memory rep

Call frame

mean_prices

Variable names

Global space

mean_prices

100

Objects in memory

The function body is stored in
compiled form on the heap

Heap space

70

50

95

98

97

96

92

price1

price2

Return
value

mean

price_IR

price_HT

75

94

93

def mean_prices(price1, price2):
price1 += 5
mean = (price1 + price2)/2

price_IR = 70
price_HT = 50

mean_prices(price_IR, price_HT)
print(price_IR)

Output

70

60.0

None

Arguments: mutability Ex 2 – Memory rep

mean_prices

Variable names

Global space

100

Objects in memory

The function body is stored in
compiled form on the heap

Heap space

95

98

97

96

92

94

93

def mean_prices(prices):
prices[0] = 75
mean = (prices[0] + prices[1])/2

prices_IRHT = [70, 50]

mean_prices(prices_IRHT)
print(prices_IRHT)

Arguments: mutability Ex 2 – Memory rep

mean_prices

Variable names

Global space

100

Objects in memory

The function body is stored in
compiled form on the heap

Heap space

50 70

95

98

97

96

92

prices_IRHT 94

93

def mean_prices(prices):
prices[0] = 75
mean = (prices[0] + prices[1])/2

prices_IRHT = [70, 50]

mean_prices(prices_IRHT)
print(prices_IRHT)

Arguments: mutability Ex 2 – Memory rep

mean_prices

Variable names

Global space

100

Objects in memory

The function body is stored in
compiled form on the heap

Heap space

50 70

95

98

97

96

92

prices_IRHT 94

93

def mean_prices(prices):
prices[0] = 75
mean = (prices[0] + prices[1])/2

prices_IRHT = [70, 50]

mean_prices(prices_IRHT)
print(prices_IRHT)

Call frame

mean_prices

prices

Return
value

mean

Arguments: mutability Ex 2 – Memory rep

mean_prices

Variable names

Global space

100

Objects in memory

The function body is stored in
compiled form on the heap

Heap space

50 75

95

98

97

96

92

prices_IRHT 94

93

def mean_prices(prices):
prices[0] = 75
mean = (prices[0] + prices[1])/2

prices_IRHT = [70, 50]

mean_prices(prices_IRHT)
print(prices_IRHT)

Call frame

mean_prices

prices

Return
value

mean

Arguments: mutability Ex 2 – Memory rep

mean_prices

Variable names

Global space

100

Objects in memory

The function body is stored in
compiled form on the heap

Heap space

50 75

95

98

97

96

92

prices_IRHT 94

93

def mean_prices(prices):
prices[0] = 75
mean = (prices[0] + prices[1])/2

prices_IRHT = [70, 50]

mean_prices(prices_IRHT)
print(prices_IRHT)

Call frame

mean_prices

prices

Return
value

mean 62.5

None Output

[75, 50]

Arguments: mutability Ex 2 – Memory rep

mean_prices

Variable names

Global space

100

Objects in memory

The function body is stored in
compiled form on the heap

Heap space

50 70

95

98

97

96

92

prices_IRHT 94

93

def mean_prices(prices):
prices[0] = 75
mean = (prices[0] + prices[1])/2

prices_IRHT = [70, 50]

mean_prices(prices_IRHT[:])
print(prices_IRHT)

Call frame

mean_prices

prices

Return
value

mean 62.5

None Output

[75, 50]

50 75 pass a copy of the object

Top Hat Question # 17

What is the output?

def mean_prices(prices):
prices[1] = 75
mean = (prices[0] + prices[1])/2

prices_IRHT = [70, 50]

mean_prices(pricesIRHT)
print(prices_IRHT)

Top Hat Question # 18

What is the output?

def mean_prices(prices):
prices[1] = 75
mean = (prices[1] + prices[2])/2

prices_IRHT = [70, 50]

mean_prices(prices_IRHT)
print(prices_IRHT)

Function comments

• AAE 875 and good practice in general

An explanation of the method

@param: an explanation for each parameter

@return: an explanation of the value returned

def mean_prices(price1, price2):
"""
Calculates the average of two prices
@param price1 First price value
@param price2 Second price value
@return average of price1 and price2
"""
return (price1 + price2)/2

• Slicing (with stride)

• Useful methods

Chapter 7: More on Strings

String slicing

• my_string[start : end] – characters from indices start to end – 1

• my_string[start : - end] – all from indices start to end but the last –end characters

• my_string[: end] – characters from indices 0 to end – 1

• my_string[start:] – characters from start to end of the string

• my_string[: -1] – all but the last character

Top Hat Question # 19

What is the output?

my_string = 'Hello world'

print(my_string[0 : 5])
print(my_string[0 : -5] + '!')
print(my_string[6:])

Top Hat Question # 20

What is the output?

my_string = 'Hello world!'

print(my_string[0 , 5])
print(my_string[0 , -5] + '!')
print(my_string[6:])

String slicing with stride

• The stride determines how much to increment the index after reading each element

• Defaults to 1 if no stride specified

• Syntax: my_string[start : end : stride]

• my_string[start : end : 2] – reads every other element between start and end – 1

String useful methods

• Finding and replacing

• Counting

• Comparison

• Splitting

• Joining

• Formatting

Useful string methods

• Find and Replace
• str.replace(old, new [, count]): returns a copy of the string with all occurrences of substring old replaced by new. If

the optional argument count is given, only the first count occurrences are replaced

Remember that strings are immutable objects. To update a string variable, a new string must be created.

my_string = 'Hello world, Hello!'
my_string = my_string.replace('Hello', 'Hey')
print(my_string) Hey world, Hey!

my_string = 'Hello world, Hello!'
my_string = my_string.replace('Hello', 'Hey', 1)
print(my_string) Hey world, Hello!

Useful string methods

• Find and Replace
• str.replace(old, new [, count]): returns a copy of the string with all occurrences of substring old replaced by new. If

the optional argument count is given, only the first count occurrences are replaced

• str.find(sub[, start[, end]]): returns the lowest index in the string where substring sub is found, such that sub is
contained in the range [start, end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 if sub is not found

0

my_string = 'Hello world, Hello!'
print(str.find('Hello'))

Useful string methods

• Find and Replace
• str.replace(old, new [, count]): returns a copy of the string with all occurrences of substring old replaced by new. If

the optional argument count is given, only the first count occurrences are replaced

• str.find(sub[, start[, end]]): returns the lowest index in the string where substring sub is found, such that sub is
contained in the range [start, end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 if sub is not found

• str.rfind(): same as str.find(sub[, start[, end]]) but searches the string in reverse, returning the last occurrence of the
string

Useful string methods

• Find and Replace
• str.replace(old, new [, count]): returns a copy of the string with all occurrences of substring old replaced by new. If

the optional argument count is given, only the first count occurrences are replaced

• str.find(sub[, start[, end]]): returns the lowest index in the string where substring sub is found, such that sub is
contained in the range [start, end]. Optional arguments start and end are interpreted as in slice notation.

Return -1 if sub is not found

• str.rfind(): same as str.find(sub[, start[, end]]) but searches the string in reverse, returning the last occurrence of the
string

• Counting
• str.count(sub [, start[, end]]): return the number of occurrences of substring sub in string S[start : end]. Optional

arguments start and end are interpreted as in slice notation

Useful string methods

• Comparisons (evaluate to Boolean)
• Character by character using their ASCII values

• Relational operators [<, <=, >, >=]

• Equality operators [==, !=]

• Membership operators [in, not in]

• Determine if two variables are bound to the same object
• Identity operators [is, is not]

string1 = 'Hello'
string2 = 'hello'
print(string1 == string2)
print(string1 > string2)
print(string1 != string2)
print(string1 is not string2)

False
False
True
True

Top Hat Question # 21

What is the output?

my_string = 'Hello world, Hello!'
my_string = my_string.replace('hello', 'hey')
print(my_string)

Top Hat Question # 22

What is the output?

my_string = 'Hello world, Hello!'
my_string = my_string.replace('hello', 'hey', 3)
print(my_string)

Top Hat Question # 23

What is the output?

my_string = 'Hello world, Hello!'
print(my_string.count('l'))

Top Hat Question # 24

What is the output if user_input is AAE 875?

user_input = input(“Enter a class number: \n“)

while user_input != “AAE 875”:
print('Try again!')
user_input = input(“Enter a class number: \n“)

else:
print('Values match!')

Top Hat Question # 25

What is the output if user_input is AAE 870?

user_input = input(“Enter a class number: \n“)

while user_input != “AAE 875”:
print('Try again!')
user_input = input(“Enter a class number: \n“)

else:
print('Values match!')

Top Hat Question # 26

What is the output if user_input is AAE 875?

user_input = input(“Enter a class number: \n“)

while user_input is not “AAE 875”:
print('Try again!')
user_input = input(“Enter a class number: \n“)

else:
print('Values match!')

Useful string methods

• Splitting strings using the split() method
• str.split (sep = None [,maxsplit = -1]): returns a list of the words (tokens) in the string, using sep as the delimiter

string. If maxsplit splits are done

• sep default value is whitespace characters

• sep value can be changed by calling split() with a string argument

string1 = 'Hello, AAE 875 students!'
string2 = string1.split()
print(string2) ['Hello,' 'AAE', '875', 'students!']

string1 = 'Hello, AAE 875 students!'
string2 = string1.split(',')
print(string2) ['Hello', ' AAE 875 students!']

Useful string methods

• Splitting strings using the split() method
• str.split (sep = None [,maxsplit = -1]): returns a list of the words (tokens) in the string, using sep as the delimiter

string. If maxsplit splits are done

• sep default value is whitespace characters

• sep value can be changed by calling split() with a string argument

• If the string starts or ends with the sep, or if two sep exist, then the resulting list will contain an empty string for each
occurrence; no empty strings are generated if sep takes the default value

string1 = ' Hello, AAE 875 students!'
string2 = string1.split()
print(string2) ['Hello,' 'AAE', '875', 'students!']

Useful string methods

• Splitting strings using the split() method
• str.split (sep = None [,maxsplit = -1]): returns a list of the words (tokens) in the string, using sep as the delimiter

string. If maxsplit splits are done

• sep default value is whitespace characters

• sep value can be changed by calling split() with a string argument

• If the string starts or ends with the sep, or if two sep exist, then the resulting list will contain an empty string for each
occurrence; no empty strings are generated if sep takes the default value

string1 = ' Hello,, AAE 875 students!'
string2 = string1.split(',')
print(string2) [' Hello,' '', ' AAE 875 students!']

Useful string methods

• Splitting strings using the split() method
• str.split (sep = None [,maxsplit = -1]): returns a list of the words (tokens) in the string, using sep as the delimiter

string. If maxsplit splits are done

• sep default value is whitespace characters

• sep value can be changed by calling split() with a string argument

• If the string starts or ends with the sep, or if two sep exist, then the resulting list will contain an empty string for each
occurrence; no empty strings are generated if sep takes the default value

string1 = ' Hello, AAE 875 students!\n'
string2 = string1.split('\n')
print(string2) ['Hello, AAE 875 students!', '']

Useful string methods

• Join strings using the join() method
• str.join(seq): returns a string which is the concatenation of the strings in the sequence seq. The separator

between elements is the string providing this method

• More on String methods here: https://docs.python.org/3/library/stdtypes.html#string-methods

You can take AAE875 or AAE720 this semester.
classes = ['AAE875', 'AAE720']
print('You can take', ' or '.join(classes), 'this semester.')

https://docs.python.org/3/library/stdtypes.html#string-methods

