
Cornelia Ilin, PhD

Department of Ag & Applied Economics
UW-Madison

Week 1 - Summer 2019

AAE 875 – Fundamentals of Object Oriented
Programming and Data Analytics

Low-level

Programming languages - Types

• 'low' because they are very close to how different hardware elements of a
computer communicate with each other

• Require extensive knowledge of computer hardware and its configuration

Created in 1940s

Low-level

• The only language directly understood by a computer; does not need to be
translated (by a compiler or interpreter – more on this later)

• All instructions use binary notations and are written as strings of 1s and 0s

• However, binary notation is very difficult to understand -> develop assembly
language to make machine language more readable by humans

Machine
language 'machine code'

011 1100001 001001 1100010

Programming languages - Types

Assembly
language

Low-level

• Consists of a set of symbols and letters

• Requires an assembler to translate the assembly language to machine
language

• A second generation because it no longer requires a set of 1s and 0s to write
instructions, but terms like:

• Assemblers automatically translate assembly language instructions 'Mul 97,
#9, 98', into machine code (011 1100001 001001 1100010).

• Easier than machine language but still difficult to understand -> develop high
level languages

Machine
language

Assembly
language Mul 97, #9, 98

Add 96, #3, 92
Div 92, #4, 97

Programming languages - Types

Low-level

• Uses English and mathematical symbols in its instructions

• This is what most programmers use these days

• Examples: Fortran, Java, C++, Python

• More closer to the logic of human thinking:
Machine
language

Assembly
language

High-level

created in 1960s, 1970s

Programming languages - Types

Low-level

• To learn to program in a high-level language you need to learn commands,
syntax, and logic, which correspond closely to vocabulary and grammar

• The 'high-level' program is often portable, the same program can run on
different hardware (not necessary OP)

• [Both machine language and assembly language are machine specific, and
not portable (the machine code has to be modified to run in another
computer)]

Machine
language

Assembly
language

High-level

Programming languages - Types

Low-level

• To learn to program in a high-level language you need to learn commands,
syntax, and logic, which correspond closely to vocabulary and grammar

• The 'high-level' program is often portable, the same program can run on
different hardware (not necessary OP)

• The code cannot be directly understood by a computer, it needs to be
translated into machine code using a compiler or interpreter

Machine
language

Assembly
language

High-level

Programming languages - Types

Low-level

• The compiler is used to translate a high-level program into machine code
(the result is an .exe file)

• Once you have an executable (.exe) file you can run the program over and
over again without having to compile it again (e.g. you only need to translate
(compile) a movie only once and can be used many times afterwards)

Machine
language

Assembly
language

High-level

compiler interpreter

Machine
codeCompiler

High-level
program

011 1100001 001001 1100010Code example:
num1 = 20
num2 = 9
numProduct = num1 * num2

Programming languages - Types

Low-level
• The compiler is used to translate a high-level program into machine code

(the result is an .exe file)

Machine
language

Assembly
language

High-level

compiler interpreter

Machine
codeCompiler

High-level
program

Run ProgramInputs

Outputs

Once the machine code is obtained
(aka running the program), the
program then processes the input data
to produce the desired output

Programming languages - Types

Low-level

• Advantages:
-> does not reveal the original source code (possible to distribute the
program w/o revealing the inner workings; when you install a software
application in your computer you typically install a compiled (.exe) version
of the code

• Disadvantages:
-> slower than interpreter languages

• Examples: C, C++, C#, Fortran, Java

Machine
language

Assembly
language

High-level

compiler interpreter

Programming languages - Types

Low-level

• An interpreter is a computer program that simulates a computer that
understands a high-level language

• The interpreter translates the high-level program line by line during
execution, which results in the desired output data

• The only result is the output data, there is no compile code
Machine
language

Assembly
language

High-level

compiler interpreter

High-level
program

Interpreter

Inputs

Outputs

Programming languages - Types

Low-level

• When using an interpreter, every time you want to run the program you
need to interpret the code again line by line (e.g. you translate (interpret) a
speech only once and the results won't be used again)

Machine
language

Assembly
language

High-level

compiler interpreter

High-level
program

Interpreter

Inputs

Outputs

Programming languages - Types

Low-level

• Advantages:
-> faster than compiler languages

• Disadvantages:
-> not suitable for commercial software developments if you don't want

to reveal the source code

• Examples: Python, Perl, Ruby

Machine
language

Assembly
language

High-level

compiler interpreter

Programming languages - Types

What type of programming language is Python?

(a) interpreted, low-level programming language
(b) compiled, low-level programming language
(c) interpreted, high-level programming language
(d) compiled, high-level programming language

Top Hat Question # 1

Programming languages Spoken languages

Syntax and structure overlaps (e.g. print("hello world") in Java and Python) overlaps (e.g. imprimer and imprimir are verbs for "print" in French
and Spanich)

Natural lifespan slowly die if no adoption (e.g. Algol, BCPL) slowly die if no adoption (e.g. Latin, Aramaic)

Number of creators can be created by one person (e.g. Python by Guido van Rossum) multiple persons

Language almost all (high-level) programming languages are written in English of course, only English

Programming v. spoken languages

How many programming languages?

• Wikipedia: over 700 'notable languages' in existence, both those in current use and
historical ones

• https://en.wikipedia.org/wiki/List_of_programming_languages

How many programming languages?

https://en.wikipedia.org/wiki/List_of_programming_languages

• An interpreted, high-level programming language

• Invented in The Netherlands by Guido van Rossum

• Conceived in the late 1980s as a successor to the ABC language

• First released in 1990 (Python 2.0)

• Major update in 2008 (Python 3.0, not backward compatible,
highly preferred)

Source:
https://en.wikipedia.org/wiki/Guido_van_Rossum

Python – language history

https://en.wikipedia.org/wiki/Guido_van_Rossum

• Its philosophy: code readability and significant whitespace

• Python interpreters are available in many operating systems

• Guido van Rossum is fan of 'Monty Python's Flying Circus', a
famous TV show in The Netherlands

• Named after Monty Payton

• Open-sourced from the beginning
Source:
https://en.wikipedia.org/wiki/Guido_van_Rossum

Python – language history

https://en.wikipedia.org/wiki/Guido_van_Rossum

Chapter 1: Introduction

• Programming in general
• Development environment
• Basic Input and output
• Errors
• Computer tour

• A computer program = instructions (executed one at a time)

• Examples of basic instructions: input (), process (), output ()

Programming in general

• A computer program = instructions (executed one at a time)

• Examples of basic instructions: input (x = 5, y = 6), process (x + y = 11), output (e.g. to a file)

Programming in general

• A computer program = instructions (executed one at a time)

• Examples of basic instructions: input (x = 5, y = 6), process (x + y = 11), output (e.g. to a file)

• A computer program is like a recipe (really, no difference!)

Programming in general

Humus and Tomato Pasta

1 tbsp pf olive oil

1 tsp of whole cumin seeds

1 large chopped onion

400 g chopped tomatoes

200 g humus

150 g pasta

1. Add the pasta to a large pan of boiling water.
Simmer for 10 minutes

2. Fry the cumin in the olive oil for a few minutes. Add
the onions and fry gently

3. Stir in the tomatoes and the humus and leave to
simmer for 5 minutes

4. Drain the pasta and serve

Human

Humus and Tomato Pasta

1 tbsp pf olive oil

1 tsp of whole cumin seeds

1 large chopped onion

400 g chopped tomatoes

200 g humus

150 g pasta

1. Add the pasta to a large pan of boiling water.
Simmer for 10 minutes

2. Fry the cumin in the olive oil for a few minutes. Add
the onions and fry gently

3. Stir in the tomatoes and the humus and leave to
simmer for 5 minutes

4. Drain the pasta and serve

Humus and Tomato Pasta
/* List of inputs */
tbsp_olive_oil = 1
chop_onion = 1
gr_chop_tomatoes = 400
gr_humus = 200
gr_pasta = 150
boiled_water = 500 ml
tsp_cumin_seeds = 1

Human Computer program

Humus and Tomato Pasta

1 tbsp pf olive oil

1 tsp of whole cumin seeds

1 large chopped onion

400 g chopped tomatoes

200 g humus

150 g pasta

1. Add the pasta to a large pan of boiling water.
Simmer for 10 minutes

2. Fry the cumin in the olive oil for a few minutes. Add
the onions and fry gently

3. Stir in the tomatoes and the humus and leave to
simmer for 5 minutes

4. Drain the pasta and serve

Humus and Tomato Pasta
/* List of inputs */
tbsp_olive_oil = 1
chop_onion = 1
gr_chop_tomatoes = 400
gr_humus = 200
gr_pasta = 150
boiled_water = 500 ml
tsp_cumin_seeds = 1

/* Pasta processing */
pan1 = boiled_water + gr_pasta
Heat(pan1, low, 10 minutes)

/*Sauce processing */
pan2 = tbsp_olive_oil + tsp_cumin_seed
Heat(pan2, high, 2 minutes)
pan2 = pan2 + chop_onion
Heat(pan2, high, 2 minutes)
pan2 = pan2 + gr_chop_tomatoes + gr_humus
Heat(pan2, simmer, 5 min)

Human Computer program

Humus and Tomato Pasta

1 tbsp pf olive oil

1 tsp of whole cumin seeds

1 large chopped onion

400 g chopped tomatoes

200 g humus

150 g pasta

1. Add the pasta to a large pan of boiling water.
Simmer for 10 minutes

2. Fry the cumin in the olive oil for a few minutes. Add
the onions and fry gently

3. Stir in the tomatoes and the humus and leave to
simmer for 5 minutes

4. Drain the pasta and serve

Humus and Tomato Pasta
/* List of inputs */
tbsp_olive_oil = 1
chop_onion = 1
gr_chop_tomatoes = 400
gr_humus = 200
gr_pasta = 150
boiled_water = 500 ml
tsp_cumin_seeds = 1

/* Pasta processing */
pan1 = boiled_water + gr_pasta
Heat(pan1, low, 10 minutes)

/*Sauce processing */
pan2 = tbsp_olive_oil + tsp_cumin_seed
Heat(pan2, high, 2 minutes)
pan2 = pan2 + chop_onion
Heat(pan2, high, 2 minutes)
pan2 = pan2 + gr_chop_tomatoes + gr_humus
Heat(pan2, simmer, 5 min)

/* Output (put it in a plate)*/
Drain(pan1)
Plate(pan1, pan2)

Human Computer program

Humus and Tomato Pasta

1 tbsp pf olive oil

1 tsp of whole cumin seeds

1 large chopped onion

400 g chopped tomatoes

200 g humus

150 g pasta

1. Add the pasta to a large pan of boiling water.
Simmer for 10 minutes

2. Fry the cumin in the olive oil for a few minutes. Add
the onions and fry gently

3. Stir in the tomatoes and the humus and leave to
simmer for 5 minutes

4. Drain the pasta and serve

Humus and Tomato Pasta
/* List of inputs */
tbsp_olive_oil = 1
chop_onion = 1
gr_chop_tomatoes = 400
gr_humus = 200
gr_pasta = 150
boiled_water = 500 ml
tsp_cumin_seeds = 1

/* Pasta processing */
pan1 = boiled_water + gr_pasta
Heat(pan1, low, 10 minutes)

/*Sauce processing */
pan2 = tbsp_olive_oil + tsp_cumin_seed
Heat(pan2, high, 2 minutes)
pan2 = pan2 + chop_onion
Heat(pan2, high, 2 minutes)
pan2 = pan2 + gr_chop_tomatoes + gr_humus
Heat(pan2, simmer, 5 min)

/* Output (put it in a plate)*/
Drain(pan1)
Plate(pan1, pan2)

Human Computer program

• Important to develop Computational thinking
• What is the main objective?
• What are the inputs, outputs, their relationship?
• What are the different components of the solution?

• Computational thinking: pseudocode it! then code it!

Programming in general

Humus and Tomato Pasta
/* List of inputs */
tbsp_olive_oil = 1
chop_onion = 1
gr_chop_tomatoes = 400
gr_humus = 200
gr_pasta = 150
boiled_water = 500 ml
tsp_cumin_seeds = 1

/* Pasta processing */
pan1 = boiled_water + gr_pasta
Heat(pan1, low, 10 minutes)

/*Sauce processing */
pan2 = tbsp_olive_oil + tsp_cumin_seed
Heat(pan2, high, 2 minutes)
pan2 = pan2 + chop_onion
Heat(pan2, high, 2 minutes)
pan2 = pan2 + gr_chop_tomatoes + gr_humus
Heat(pan2, simmer, 5 min)

/* Output (put it in a plate)*/
Drain(pan1)
Plate(pan1, pan2)

Code it!
/* Main objective is to cook Humus and
Tomato Pasta

The inputs needed include olive oil, chopped
onion, chopped tomatoes, humus, pasta,
water, and cumin seeds

The first output is cooked pasta obtained by
adding pasta to a pan of boiling water

The second output is the pasta sauce
obtained my mixing olive oil, cumin seeds,
chopped onion, tomatoes, and humus in a
frying pan

The components of the solution are the first
output and second output

The final output is the Humus and Tomato
Pasta dish */

Pseudocode it!

• Explain your code: Summarize and provide a high-level explanation for what your code does in
plain English! Python uses the pound sign (#) for comments

• Trace your code: Run the code as the computer does
• Take a piece of paper (seriously!)
• Write down the variables and their values
• Update the variables as they change as you mentally walk through the statements sequentially

Programming in general

Programming in general

• An awesome tool for tracing Python code:
http://www.pythontutor.com/visualize.html#mode=edit

http://www.pythontutor.com/visualize.html#mode=edit

Development environment

• After installing Python 3 you will need to install an integrated development environment (IDE)

• An IDE is a software application consisting of an editor, build automation tools (e.g. compiler,
interpreter), and a debugger

• Our preferred IDE is Eclipse. Supports the PyDev interpreter. You will use PyDev in this class

• Text enclosed in '' or “” is a string literal
• Allowed text in string literals: any letters, numbers, spaces, and any symbols like @#$

Basic output

• One way to print output is to use the built-in function print()
• Each print() statement will output on a new line

print('I am a resident of WI.')
print('I study at UW')

I am a resident of WI.
I study at UW

• How can we move text to the next line without using multiple print() statements?

Basic output

• One way to print output is to use the built-in function print()
• Each print() statement will output on a new line

print('I am a resident of WI.')
print('I study at UW')

I am a resident of WI.
I study at UW

• How can we move text to the next line without using multiple print() statements?
• Solution: use the newline escape character \n (should be part of the string!)

Basic output

• One way to print output is to use the built-in function print()
• Each print() statement will output on a new line

print('I am a resident of WI.')
print('I study at UW')

I am a resident of WI.
I study at UW

print('I\nam\nsmart') I
am
smart

• How can we move text to the next line without using multiple print() statements?
• Solution: use the newline escape character \n (should be part of the string!)

Basic output

• One way to print output is to use the built-in function print()
• Each print() statement will output on a new line

print('I am a resident of WI.')
print('I study at UW')

I am a resident of WI.
I study at UW

print('I \n am \n smart') II
am.
smart

Basic output

• To keep the output on the same line: specify end = ' ' as an argument of the print() function

I am a resident of WI. I study at UW.print('I am a resident of WI.', end = ' ')
print('I study at UW.')

notice the space

Basic output

• How to output a variable's value? Use print(variable) -> without quotes

20's

my_age = 20
print(my_age, end = '')
print('\'s')

no space

Basic output

• How to concatenate items within a statement?

my_age = 20
print(my_age)
print('I am a resident of WI.')
print('I am', my_age, 'years old.')

20
I am a resident of WI.
I am 20 years old.

A comma separates multiple items. A comma adds
a whitespace on the left side

Basic output

• How to concatenate items within a statement?

my_age = 20
print(my_age)
print('I am a resident of WI.')
print('I am' , my_age , 'years old.')

20
I am a resident of WI.
I am 20 years old.

A comma separates multiple items. A comma adds
a whitespace on the left side

Basic output

my_age = 20
print(my_age)
print('I am a resident of WI.')
print('I am' .., my_age…,….'years old.')

20
I am a resident of WI.
I am 20 years old.

• How to concatenate items within a statement?

A comma separates multiple items. A comma adds
a whitespace on the left side

Basic output

myAge = 20
print(myAge)
print('I am a resident of WI.')
print('I am ' .., myAge…,….'years old.')

20
I am a resident of WI.
I am 20 years old.

A comma separates multiple items. A comma adds
a whitespace on the left side

• How to concatenate items within a statement?

What is the output of:

print('2 and 2 =', 4)

Top Hat Question # 2

What is the output of:

print('2 and 2 = ', 4)

Top Hat Question # 3

Basic input

• You can read input using the built-in input() function
• Reading from the input() function always results in a string
• String v. Integer?

'375' is a string, aka a sequence of characters '3', '7', '5'
375 is an integer, the number three-hundred seventy-five

number = input()
print('My lucky number is', number)

375
My lucky number is 375

Type is string, i.e. '375'

Basic input

• You can read input using the built-in input() function
• Reading from the input() function always results in a string
• String v. Integer?

'375' is a string, aka a sequence of characters '3', '7', '5'
375 is an integer, the number three-hundred seventy-five

number = int(input())
print('My lucky number is', number)

375
My lucky number is 375

• Use the built-in int() function to convert string to integer

Type is integer, i.e. 375

Basic input

• You can add a prompt in the input() function as well

• You can perform operations inside the print() function

number = int(input('Enter your lucky number: '))
print('My lucky number is', number)

Enter your lucky number: 375
My lucky number is 375

Type is integer, i.e. 375

a = int(input())
b = int(input())
print(a * b)
print(a + b)

a = 5
b = 5
25
10

• RuntimeErrors (occur when the program is run by the interpreter, during code execution)
Types: IdententionError, ValueError, NameError, TypeError

• LogicErrors (do not stop the execution of the program but the code does not behave as intended)

Errors

• SyntaxErrors (occur before the program is run by the interpreter, prior to executing code)

day = 4
print(‘Today is July' 4)

File '<main.py>', line 2
print(Today is July' 4)

SyntaxError: invalid syntax

print(2 * 4) print(2 * 40)

What is missing in the syntax?

Do you get any error when running this code? If yes, what type of error?

Top Hat Question # 4

status = 'sunny'
print('Today is' + status)

Chapter 2: Variables and expressions

• Variables
• Expressions
• Objects
• Modules

• In programming, a variable is a named item that holds the value of an expression.

• Variables are not declared in Python. Their data type is inferred based on the assigned value

• Thus, Python is a dynamic typed language

• The data type of a variable can change depending on the assigned value

Variables

hot_days hot_days = 5

var name

data type is integer

Variables

• Naming Rules:
• Start with a letter or underscore (_)
• Subsequent characters can be letters, digits, or underscores (_)
• Can be any length (but choose shorter and meaningful names)
• Case-sensitive: days ≠ Days
• Cannot be a keyword used by Python (e.g. print, and, while)
-> Good practice: use all lowercase letters and place underscores between words

Variables

• Naming Rules:
• Start with a letter or underscore (_)
• Subsequent characters can be letters, digits, or underscores (_)
• Can be any length (but choose shorter and meaningful names)
• Case-sensitive: days ≠ Days
• Cannot be a keyword used by Python (e.g. print, and, while)
-> Good practice: use all lowercase letters and place underscores between words

• Can assign multiple variables at once (allows for different data types)

hot_days, month = 5, 'June'

hot_days = 5
month = 'June'

Variables

• Naming Rules:
• Start with a letter or underscore (_)
• Subsequent characters can be letters, digits, or underscores (_)
• Can be any length (but choose shorter and meaningful names)
• Case-sensitive: days ≠ Days
• Cannot be a keyword used by Python (e.g. print, and, while)
-> Good practice: use all lowercase letters and place underscores between words

• Can assign multiple variables at once (allows for different data types)
• Can swap variable values

hot_days, month = 5, 'June'

hot_days = 5
month = 'June'

hot_days, month = month, hot_days

hot_days = 'June'
month = 5

Variables

hot_days, month = 5, 'June'

hot_days = 5
month = 'June'

hot_days, month = month, hot_days

hot_days = 'June'
month = 5

del hot_days
del month

• Naming Rules:
• Start with a letter or underscore (_)
• Subsequent characters can be letters, digits, or underscores (_)
• Can be any length (but choose shorter and meaningful names)
• Case-sensitive: days ≠ Days
• Cannot be a keyword used by Python (e.g. print, and, while)
-> Good practice: use all lowercase letters and place underscores between words

• Can assign multiple variables at once (allows for different data types)
• Can swap variable values
• Can delete variables

Top Hat Question # 5

• Write code to swap the values of a and b

a = 2
b = 3

a = 3
b = 2

Data types

Non-primitivePrimitive

StringInteger Float Boolean List Tuple Array Dictionary Set File

Data types

Non-primitivePrimitive

StringInteger Float Boolean List Tuple Array Dictionary Set File

numeric data types

Numeric data types

• Integer: used to represent whole numbers from negative infinity to infinity, like 1, 2, 3 or -1, -2,…

• Float: used for rational point numbers, usually ending with a decimal figure, like 1.11 or 2.54

• Remember that in Python you don't need to explicitly state the variable type because Python is a
dynamically typed language

• To find the class of a variable:

type(variable)

Numeric data types

float(input('type a float number: ')

• Float: the term 'float' because the decimal point can appear (float) anywhere

• Assigning a floating-point value outside of the allocated range results in an OverflowError

• To read a float type as an input:

• Literals: represent a specific value assigned to a variable (e.g. integer literal, float literal)

Which number is not a float?

(a) 1.0
(b) .55
(c) 2.3e2
(d) 4

Top Hat Question # 6

Variable assignment

• The assignment operator (=) assigns a value to a variable

• The assignment operator (=) is right-to-left associative
• Evaluate expression 2 + 3
• Assign the value of expression to var_name

a = b = c = 2 + 3 var_name = expression

What is the difference between an expression and an assignment?

Top Hat Question # 7

Expressions – operators

• Unary:
• -: negation

• Binary:
• +: addition
• -: subtraction
• *: multiplication
• /: division
• **: exponent
• %: reminder (modulo)

• Compound:
• +=: add and assign (e.g. a += 3 is shorthand for a = a + 3)
• Other variants: -=; *=; /=; %=

Source: Zybooks, Table 2.5.2

Expressions – operator precedence

• An expression is evaluated using the order of standard mathematics

What is the result of this expression?

(a) 28
(b) 23
(c) 30
(d) 36

Top Hat Question # 8

(3 x 2) + (8 + 4) x 2

Expressions – integer division

• The division operator (/) returns a floating-point number

• The floored division* operator (//) returns:
• a floating-point number if either operand is a float
• an integer if both operands are integers

*used to round down the result of a floating-point division to the closes whole value

10 / 20
10 / 2

0.5
5.0

10 // 20
10 // 2
5.0 // 2

0
5

2.0

Expressions – modulo operator

• The modulo operator (%) evaluates the reminder of the division of two integer operands

10 % 20
10 % 2

10
0

Type conversion

• Expressions sometimes combine a floating-point and integer
• So what is the data type of the result of the expression in this case?

• Implicit conversion: implicit cast made by the interpreter to the widest type
• Explicit conversion: implicit cast initiated by the programmer using data type methods, such as

• int() converts to integer type (if the input is a float number it will chop off the decimal part)
• float() convers to float type
• str() converts to string type

Narrowest Widest

Integer -> float

Type conversion

• Implicit conversion:

• Explicit conversion:

print(5 + 2.0)
print(5 + 2.2)
print(5 + 2)
print (5 / 2)
print(5 / 5)

print(int(5 / 5))
print(str(5 / 5))
print(float(5 + 2)

7.0
7.2
7
2.5
1.0

1
1.0
7.0

float
float
integer
float
float

integer
string
float

data_type

Objects

• Are not created by the program!

• Instead the Python interpreter creates and manipulates objects

• Used to represent everything in Python (e.g. data types (integers, strings, lists), functions))

• Let's look at an example…

Objects

age1 = 18
Variable names Objects in memory

age1 18 99

98

Global space Heap space

Objects

age1 = 18
age2 = 23.4

Variable names Objects in memory

age1 18

23.4age2

99

98

Global space Heap space

Objects

age1 = 18
age2 = 23.4
age2 = age1

Variable names Objects in memory

age1 18

23.4age2

99

98

Name binding:
An object can be assigned to multiple variables.
A variable cannot have multiple objects.

Global space Heap space

Objects

age1 = 18
age2 = 23.4
age2 = age1

Variable names Objects in memory

age1 18

23.4age2

99

98

Garbage collector (deletes objects with
no reference to optimize memory)

Name binding:
An object can be assigned to multiple variables.
A variable cannot have multiple objects.

Global space Heap space

Objects

age1 = 18
age2 = 23.4
age2 = age1
age2 = age2 * 2

Variable names Objects in memory

age1 18

age2

99

98

36 97

Garbage collector (deletes objects with
no reference to optimize memory)

Integers and strings are immutable – modifying their value results in a new object being created

Global space Heap space

Objects

age1 = 18
age2 = 23.4
age2 = age1
age2 = age2 * 2
combined_age = age1 + age2

Variable names Objects in memory

age1 18

age2

99

98

36 97

54

combined_age

96

Garbage collector (deletes objects with
no reference to optimize memory)

Global space Heap space

Objects

age1 = 18
age2 = 23.4
age2 = age1
age2 = age2 * 2
combined_age = age1 + age2

to get object value
print(age1)

Variable names Objects in memory

age1 18

age2

99

98

36 97

54

combined_age

96

object value

Garbage collector (deletes objects with
no reference to optimize memory)

Global space Heap space

Objects

age1 = 18
age2 = 23.4
age2 = age1
age2 = age2 * 2
combined_age = age1 + age2

to get object type
print(type(age1))

Variable names Objects in memory

age1 18 <class 'int'>

age2

99

98

36 <class 'int'> 97

54 <class 'int'>

combined_age

96

object type

Garbage collector (deletes objects with
no reference to optimize memory)

Arrows: age1 holds a reference to an object of type int with value 18

Global space Heap space

Objects

age1 = 18
age2 = 23.4
age2 = age1
age2 = age2 * 2
combined_age = age1 + age2

to get object identity (memory loc)
print(id(age1))

Variable names Objects in memory

age1 18

age2

99

98

36 97

54

combined_age

96

object
identity

Garbage collector (deletes objects with
no reference to optimize memory)

Global space Heap space

• Sequence, mapping, set data types

Chapter 3: Data types

Data types

Non-primitivePrimitive

StringInteger Float Boolean List Tuple Array Dictionary Set File

numeric data types sequence data types

Sequence data types

• String: a sequence of characters; strings are immutable with fixed size

• List**: a container of (heterogenous) objects; lists are mutable with unlimited size

• Tuple**: a container of (heterogenous) objects; tuples are immutable with fixed size

** Sequence types: because objects are ordered by position (index) in the container

Note: Array is also a sequence data type but we will talk about this later in the course.

String basics

• A string is a sequence of characters

• A string literal is created by surrounding characters with single (' ') or double quotes (“ ”)

• The string type is a sequence data type, meaning that:

• The elements (characters) of a string are ordered (indexed) from left to right

• Indexing starts at 0

H e l l o w o r l d

0 1 2 3 4 5 6 7 8 9 10
my_string = 'hello world'

String basics – memory representation

my_string = 'Hello world'

String names

my_string 'Hello world'

Objects in memory

99

98

97

Global space Heap space

String basics

• Built-in functions:
• len(string) – returns number of characters in my_string;
• chr('a') – returns the integer 97 representing the Unicode code point of the 'a' character

• Built-in methods:
• string.upper() – returns a copy of string with all the cased characters converted to uppercase
• string.lower() – returns a copy of string with all the cased characters converted to lowercase
• string.capitalize() – returns a copy of string with its first character capitalized and rest lowercased

More on Python built-in functions here:
https://docs.python.org/3.7/library/functions.html

More on Python built-in methods here:
https://docs.python.org/3/library/stdtypes.html#textseq

https://docs.python.org/3.7/library/functions.html
https://docs.python.org/3/library/stdtypes.html#textseq

What is the output?

Top Hat Question # 9

my_string = 'Hello world'
my_number = 5
my_number = 5 * 2
print(my_string.upper())

String basics – accessing characters

• my_string[index] – character at given index (counts indexing from left to right)

• my_string[-index] – character at given index (counts indexing from right to left)

H e l l o w o r l d

0 1 2 3 4 5 6 7 8 9 10 my_string = 'Hello world'
print(len(my_string))
print(my_string[4])
print(my_string[-4])-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

11
'o'
'o'

String basics – add, change, remove characters

• String objects are immutable! Meaning that we cannot add, change, or remove a character

string1 = 'Today'
string2 = ' is 4th of July.'
string2[16] = 'n'
string2[17] = 'e'

String basics – add, change, remove characters

• String objects are immutable! Meaning that we cannot add, change, or remove a character
• Instead, update a character by assigning a new string

string1 = 'Today'
string2 = ' is 4th of July.'
string2[16] = 'n'
string2[17] = 'e'
string2 = ' is 4th of June'

String basics – concatenation

• Using the addition (+) sign

string1 = 'Today'
print(string1)
string2 = ' is 4th of July.'
print(string2)
concat_string = string1 + string2
print(concat_string)

Today

is 4th of July

Today is 4th of July

Data types

Non-primitivePrimitive

StringInteger Float Boolean List Tuple Array Dictionary Set File

numeric data types sequence data types

List basics

• A list is a container initialized with brackets []
• Elements of a list are comma (,) separated
• Elements of a list can be heterogenous, i.e. of different types
• Elements of a list are ordered by position (index) in the container, meaning that
• A list is a sequence data type

• Example: my_list = ['a', 123, 'b']
• Example of empty list: my_empty_list = []
• A list is mutable, meaning that one can add, remove, and edit its elements

List basics – accessing elements

• Similar to strings, list elements are accessed by index (remember list is a sequence data type)

my_list = ['a', 123, 'b']
print('The first element in my list is', my_list[0], '.') The first element in my list is a .

List basics – add, change, remove elements

• The list data type is a mutable object!
• We can add, change, ore remove elements of a list using built-in methods:

• list.append(x) – ads element x to the end of the list
• list.remove(x) – removes the first element from the list whose value is equal to x
• list.pop(index) – removes the element at the given index in the list, and returns it; if no index is specified

removes and returns the last item in the list

my_list = ['a', 123, 'b']
my_list.append('abc')
print(my_list)
my_list.remove('a')
print(my_list)
my_list.pop(2)
print(my_list)

['a', 123, 'b', 'abc']

[123, 'b', 'abc']

[123, 'b']

Notice that the list output is
always enclosed by brackets!

Reason: lists can be nested
(more on this later)

List basics – add, change, remove elements

• Check here for more list related built-in methods:
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

• The list data type is a mutable object!
• We can add, change, ore remove elements of a list using built-in methods:

• list.append(x) – ads element x to the end of the list
• list.remove(x) – removes the first element from the list whose value is equal to x
• list.pop(index) – removes the element at the given index in the list, and returns it; if no index is specified

removes and returns the last item in the list

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

List basics – concatenation

• Lists are concatenated using the (+) sign. Question: how do we concatenate strings?

list1 = ['a', 123, 'b']
list2 = ['a']
print(list2 + list1) ['a', 'a', 123, 'b']

What is the output of the print function? Explain.

Top Hat Question # 10

list1 = ['a', 123, 'b']
list2 = ['a']
list2 = list1
print(list2 + list1)

List basics – memory representation

my_list = ['a', 123, 'b']

List names

my_list

Objects in memory

'a'

123

'b'

The interpreter creates
new object for each
element in the list.
Each object is indexed

Arrow meaning: my_list holds references to objects in list

99

97

0

1

2

Global space Heap space

List basics

• Built-in functions:
• len(list) – returns the length of the list
• min(list) – returns the element with the smallest value in the list (numeric types only)
• max(list) – returns the element with the largest value in the list (numeric types only)
• sum(list) – returns the sum of all elements of a list (numeric types only)

• More built-in methods:
• list.index(x) – returns the index of the first element in the list whose value is equal to x
• list.count(x) – returns the number of times x appears in the list

More on Python built-in functions here:
https://docs.python.org/3.7/library/functions.html

More on Python built-in methods here:
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

https://docs.python.org/3.7/library/functions.html
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

What is the output?

Top Hat Question # 11

list1 = ['a', 123, 'b']
list1.count('a')

Data types

Non-primitivePrimitive

StringInteger Float Boolean List Tuple Array Dictionary Set File

numeric data types sequence data types

Tuple basics

• A tuple is a container initialized with parenthesis () or no parenthesis (safe to add them)
• Elements of a tuple are comma (,) separated
• Elements of a tuple can be heterogenous, i.e. of different types
• Elements of a tuple are ordered by position (index) in the container, meaning that:
• A tuple is a sequence data type
• Looks pretty much like a list but is more memory efficient

• Example: my_tuple = ('a', 123, 'b')
• Example of empty list: my_empty_tuple = ()
• A tuple is immutable, meaning that one cannot add, remove, and edit its elements

Tuple basics – accessing elements

my_tuple = ('a', 123, 'b')
print('The first element in my list is', my_tuple[0], '.')
print(my_tuple)

The first element in my list is a .
('a', 123, 'b')

• Similar to lists (and strings), tuple elements can be accessed by index

Notice that the tuple output is
always enclosed by brackets!

Reason: tuples can be nested
(more on this later)

Tuple basics – accessing elements

• When to use tuples? When you want to make sure that the values do not change. Remember
that tuples are immutable objects, so you cannot change, add, or delete values.

my_tuple = ('a', 123, 'b')
print('The first element in my list is', my_tuple[0], '.')
print(my_tuple)

The first element in my list is a .
('a', 123, 'b')

• Similar to lists (and strings), tuple elements can be accessed by index

Tuple basics – memory representation

my_tuple = ('a', 123, 'b')

Tuple names

my_tuple

Objects in memory

'a'

123

'b'

The interpreter creates
new object for each
element in the tuple.
Each object is indexed

Arrow meaning: my_tuple holds references to objects in tuple

99

97

0

1

2

Global space Heap space

Tuple basics – memory representation

my_tuple = ('a', 123, 'b')
my_tuple2 = ()

Tuple names

my_tuple

Objects in memory

'a'

123

'b'

Arrow meaning: my_tuple holds references to objects in tuple.
my_tuple2 is an empty set

99

97

0

1

2

my_tuple2

Global space Heap space

Data types

Non-primitivePrimitive

StringInteger Float Boolean List Tuple Array Dictionary Set File

numeric data types sequence data types mapping data type

Dictionary basics

• A dictionary is a container used to describe associative relationships between keys (words) and
values (definitions)

• It's initialized with curly brackets {} that surround the key : value pairs
• Multiple key : value pairs are separated by comma (,)
• The keys can be any immutable type, e.g. numeric, string, tuple
• The values can be of any type

• Example: airplanes= {'boeing737' : 134.9, 'boeing777' : 442.2}

dictionary name

Dictionary basics

• A dictionary is a container used to describe associative relationships between keys (words) and
values (definitions)

• It's initialized with curly brackets {} that surround the key : value pairs
• Multiple key : value pairs are separated by comma (,)
• The keys can be any immutable type, e.g. numeric, string, tuple
• The values can be of any type

• Example: airplanes= {'boeing737' : 134.9, 'boeing777' : 442.2}

key key

Dictionary basics

• A dictionary is a container used to describe associative relationships between keys (words) and
values (definitions)

• It's initialized with curly brackets {} that surround the key : value pairs
• Multiple key : value pairs are separated by comma (,)
• The keys can be any immutable type, e.g. numeric, string, tuple
• The values can be of any type

• Example: airplanes= {'boeing737' : 134.9, 'boeing777' : 442.2}

value value

Dictionary basics

• A dictionary is a container used to describe associative relationships between keys (words) and
values (definitions)

• It's initialized with curly brackets {} that surround the key : value pairs
• Multiple key : value pairs are separated by comma (,)
• The keys can be any immutable type, e.g. numeric, string, tuple
• The values can be of any type

• Example: airplanes= {'boeing737' : 134.9, 'boeing777' : 442.2}

• Example empty dictionary: airplanes = { }

Dictionary basics

• A dictionary is a mapping data type, so not a sequence data type (!)
• This means that elements of a dictionary do not maintain any specific ordering
• A dictionary is a mutable object meaning that one can add, remove, and edit its elements

products = {'GM seed': 120, 'Conv' : 87}
print(products) {'GM seed' : 120, 'Conv : 87'}

Notice that the dictionary
output is always enclosed by
curly brackets!

Reason: dictionaries can be
nested (more on this later)

Dictionary basics – accessing elements

The price of GM seed is 120

• Dictionary elements can only be accessed by key name (no index -> no ordering of entries)

• What if you try to access a key that doesn't exist in the dictionary?

products = {'GM seed': 120, 'Conv' : 87}
print('The price of GM seed is', products['GM seed'])

Traceback (most recent call last): File "<stdin>",
line 2, in <module>
KeyError: 'IR seed'

products = {'GM seed': 120, 'Conv' : 87}
print('The price of GM seed is', products['IR seed'])

Dictionary basics - add, change, remove elements

• The dictionary data type is a mutable object!
• To add a key : value pair in the dictionary, assuming the key : value pair doesn't already exist

• To change a value belonging to an existing key

• To remove a key, assuming the key already exists

products['IR seed'] = 110

products['Conv'] = 50

del products['GM seed']

Dictionary basics – memory representation
Dictionary name

airplanes

Objects in memory

134.9

442.2

airplanes = {
'boeing737' : 134.9,
'boeing777' : 442.2

}

'boeing737'

'boeing777'
99

98

Global space Heap space

Write code to compute the sum of the price of boeing 737 and boeing 777

Top Hat Question # 12

airplanes = {
'boeing737' : 134.9,
'boeing777' : 442.2

}

Data types

Non-primitivePrimitive

StringInteger Float Boolean List Tuple Array Dictionary Set File

numeric data types sequence data types mapping data type

set data type

Set basics

• A set is a container of unordered (no indexing!) and unique elements
• Initialization can be done in two ways:

• Using the built-in set() function, which accepts only sequence-type objects (string, list, tuple)
• Using the set literal with curly brackets {}; elements are separated by a comma (,)

• Unique elements: duplicate values are removed when passed into the set
• Sets are mutable objects, meaning that one can add or remove elements

• Example using the set() function: my_set = set(['a', 'b', 'c'])
• Example using the set literal: my_set = {'a', 'b', 'c'}
• Example of an empty set: my_set = set() -> note: an empty set can be only created with set()
• If you type my_set = { }, then an empty dictionary will be created!

Set basics

• More examples

my_set = set(['a', 'b', 'c', 'd', 'c', 'a'])
print(my_set) {'c', 'a', 'b'}

No specific ordering. Run the
code again and you might see a
different ordering

Notice that the set output is
always enclosed by
curly brackets!

Reason: sets can be nested
(more on this later)

Set basics – adding or removing elements

• The set data type is a mutable object!
• We can add or remove elements of a set using methods included in the set() function:

• set.add(x) – add element x to set
• set.remove(x) - remove element x from set; raises KeyError if not present
• set.pop() – remove and return an arbitrary element from set; raises KeyError if set is empty
• set.clear() – remove all elements from set; the resulting set is an empty set (of length 0)
• set.update(set_a) – returns set with elements added from set_a

• Check here for more set related objects here:

https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset

https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset

Set basics – memory representation
Set names

airplanes

Objects in memory

'boeing 737' 'boeing 777'

airplanes = set(['boeing 737', 'boeing 777'])

99

98

Global space Heap space

Set basics – memory representation
Set names

airplanes

Objects in memory

'boeing 737' 'boeing 777'

airplanes = set(['boeing 737', 'boeing 777'])
cars = set(['VW Tiguan'])

99

98cars 'VW Tiguan'

Global space Heap space

Set basics – memory representation
Variable names Objects in memory

airplanes = set(['boeing 737', 'boeing 777'])
cars = set(['VW Tiguan'])
cars.add('VW Passat')

airplanes 'boeing 737' 'boeing 777' 99

98cars 'VW Tiguan' 'VW Passat'

Global space Heap space

Set basics – memory representation
Variable names Objects in memory

airplanes = set(['boeing 737', 'boeing 777'])
cars = set(['VW Tiguan'])
cars.add('VW Passat')
airplanes.update(cars)

airplanes
'boeing 737' 'boeing 777'
'VW Tiguan' 'VW Passat'

99

98cars 'VW Tiguan' 'VW Passat'

Global space Heap space

Set basics – memory representation
Variable names Objects in memory

airplanes = set(['boeing 737', 'boeing 777'])
cars = set(['VW Tiguan'])
cars.add('VW Passat')
airplanes.update(cars)
transportation = airplanes

airplanes
'boeing 737' 'boeing 777'
'VW Tiguan' 'VW Passat'

99

98

transportation

'VW Tiguan' 'VW Passat'cars

Global space Heap space

Set basics – memory representation
Variable names Objects in memory

airplanes = set(['boeing 737', 'boeing 777'])
cars = set(['VW Tiguan'])
cars.add('VW Passat')
airplanes.update(cars)
transportation = airplanes
cars.clear()

airplanes
'boeing 737' 'boeing 777'
'VW Tiguan' 'VW Passat'

99

98

transportation

cars

Note: cars is now an empty set

Global space Heap space

Set basics – memory representation
Variable names Objects in memory

airplanes = set(['boeing 737', 'boeing 777'])
cars = set(['VW Tiguan'])
cars.add('VW Passat')
airplanes.update(cars)
transportation = airplanes
cars.clear()
airplanes.clear()

airplanes 99

98

transportation

cars

Note: cars, transportation, airplanes are now empty sets

Global space Heap space

Set basics – memory representation
Variable names Objects in memory

airplanes = set(['boeing 737', 'boeing 777'])
cars = set(['VW Tiguan'])
cars.add('VW Passat')
airplanes.update(cars)
transportation = airplanes
cars.clear()

airplanes
'boeing 737' 'boeing 777'
'VW Tiguan' 'VW Passat'

99

98

transportation

cars

Note: cars is now an empty set

Global space Heap space

Set basics – memory representation
Variable names Objects in memory

airplanes = set(['boeing 737', 'boeing 777'])
cars = set(['VW Tiguan'])
cars.add('VW Passat')
airplanes.update(cars)
transportation = airplanes
cars.clear()
transportation.clear()

airplanes 99

98

transportation

cars

Note: cars, transportation, airplanes are now empty sets
Empty sets have len(set) = 0

Global space Heap space

Set basics – set theory operations

• The set data type supports common set theory operations, such as:
• We can add or remove elements of a set using methods included in the set() function:

• set.intersection(set_a, set_b) – returns a set with all elements in common between set and set_a, set_b
• set.union(set_a, set_b) – returns a set containing all of the unique elements in all sets

• Check here for more set related built-in objects here:

https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset

https://docs.python.org/3/library/stdtypes.html#set-types-set-frozenset

• Conditional statements
• Boolean statements
• Code blocks and indentation
• Conditional expressions

Chapter 4: Branches

• The if statement:

Conditional statements

if condition:
true statement
.
.
last true statement

condition

True
statement block

Following
statements

true

false

• The if-else statement:

Conditional statements

if condition:
true statement
.
.
last true statement

else:
false statement
.
.
false statement

condition

True
statement block

Following
statements

true false

False
statement block

• The if-else if statement:

Conditional statements

if condition1:
true statement
.
.
last true statement

elif condition2:
true statement
.
.
true statement

else:
false statement
.
.
false statement

condition
1

True
statement block

Following
statements

true

false

False
statement block

condition
2

True
statement block

true

false

• Boolean values: True or False (capitalized!)
• Boolean operators: and, or, not

• and: true when both operands are true
• or: true when at least one operand is true
• not: True (False) when the single operand is False (True)

• Boolean expression: an expression that uses Boolean operators
• Examples of Boolean expressions:

Boolean statements

(age > 16) and (age <25)
(age < 16) and (days < 8)
(age > 16) or (days > 7)
not (days > 6)

True and True -> True
False and True -> False
True or False -> True
not (True) -> False

age = 18, days = 7

Data types

Non-primitivePrimitive

StringInteger Float Boolean List Tuple Array Dictionary Set File

numeric data types sequence data types mapping data type

set data type

• Comparison operators: (expression1 comparison operator expression2), e.g. (age > 16)
• Equality comparison:

• ==: equal to
• !=: not equal to

• Relational comparison:
• >: greater than
• <: less than
• >=: greater than or equal
• <=: less than or equal
• a < b < c: operator chaining (b > a?, b < c?; note that a is never compared to c)

Boolean statements

• Why are Boolean operators (and, or, not) important in programming?

Boolean statements

• Why are Boolean operators (and, or, not) important in programming?
• They are commonly used in expressions found in if-else statements!
• To understand loops you need to understand Booleans.
• How do you code “I cannot rent a car if I am less than 21 years old and more than 81

years old” using Boolean operators?

Boolean statements

age = int(input('Enter driver\'s age: ')
if (age >= 21) and (age <= 81):

print('I can rent a car')
else:

if (age < 21):
print('Too young to rent a car')

else:
print('Too old to rent a car')

Source: Zybooks, Table 4.7.1

Boolean statements – operator precedence

• An expression is evaluated using the order of standard mathematics

What is the output?

Top Hat Question # 13

integer = 4
if(integer > 4 + 2):

print('integer is greater than 4')
integer = 4 + 2

else:
print('integer is not greater than 4. The integer value is', integer, '.')

• A code block in Python is defined by its indentation level
• Highly recommended to use 4 spaces per indentation level
• Either use spaces or tabs for indentation (never both!). It's very likely you will end up with an

IndentationError if you use both!

Code blocks and indentation

• A code block in Python is defined by its indentation level
• Highly recommended to use 4 spaces per indentation level
• Either use spaces or tabs for indentation (never both!). It's very likely you will end up with an

IndentationError if you use both!

Code blocks and indentation

prices = [100, 55, 66, 75, 99]
return_value = 99 in prices

if(return_value == True)
print('the index of element 99 in list is', list.index[99])

else:
print('Element 99 is not in list')
print('Try another number')

• A code block in Python is defined by its indentation level
• Highly recommended to use 4 spaces per indentation level
• Either use spaces or tabs for indentation (never both!). It's very likely you will end up with an

IndentationError if you use both!

• Not more than 80 columns or 120 columns of text. Split code on multiple lines if necessary

Code blocks and indentation

prices = [100, 55, 66, 75, 99]
return_value = 99 in prices

if(return_value == True)
print('the index of element 99 in list is', list.index[99])

else:
print('Element 99 is not in list')
print('Try another number')

What is the output if input is 33?

Top Hat Question # 14

age = int(input())

if(age ==18):
print('ready for college?')

elif(age == 22):
print('ready for grad school?')

else:
if(age < 18):

print('too young')
else:
print('you are probably in grad school or already have a job')

• Programming languages types
Source: https://www.youtube.com/watch?v=1OukpDfsuXE

• Eclipse logo
Source: https://www.eclipse.org/

• PyDev logo
Source: https://www.pydev.org/

• Garbage collector picture
Source: www.zybooks.com

References: accessed June 12, 2019

https://www.youtube.com/watch?v=1OukpDfsuXE
https://www.eclipse.org/
https://www.pydev.org/
http://www.zybooks.com/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119
	Slide Number 120
	Slide Number 121
	Slide Number 122
	Slide Number 123
	Slide Number 124
	Slide Number 125
	Slide Number 126
	Slide Number 127
	Slide Number 128
	Slide Number 129
	Slide Number 130
	Slide Number 131
	Slide Number 132
	Slide Number 133
	Slide Number 134
	Slide Number 135
	Slide Number 136
	Slide Number 137
	Slide Number 138
	Slide Number 139
	Slide Number 140
	Slide Number 141
	Slide Number 142
	Slide Number 143
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Slide Number 148

