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Attention is All You Need

Vaswani et al., 2017

Cannot parallelize due to recurrency, i.e., very Remove recurrency and rely on positional

long training times encodings and self-attention only

> Transformer architecture




Transformer (High Level View)

Vaswani et al., 2017 considered the task of machine translation

Encoder encodes source sentence (source token embeddings)

Decoder predicts target sentence, one token at a time
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QUIZ

Q 1: What was the "model of choice” before Transformers?



QUIZ

Q 2: What was the main issue Vaswani et al. 2017, wanted to address

with the new Transformer architecture?
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Q 2: Do you need both, an encoder and decoder?
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Q 4: What is the difference between pre-training and fine-tuning?
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Ped-BERT Data

Task 1: pre-train the model Task 2: fine-tune to specific
on large self-labeled data task, diagnosis code prediction
12 mil 0.76 mil 0.51 mil

1991-2012 Birth IDs

with SSN

) Birth IDs
with SSN
20 mil 141 mil 3.94 mil 3.55 mil

drop all patients from the H H H

fine-tuning stage

A

1991-2017 1991-2017
drop all patients with <3

ER/PD visits




Ped-BERT Architecture

Encoder

Add &
normalize

Fully connected
network

Add &
normalize

Multi-head
attention
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Ped-BERT Pre-training

Fully connected

Encoder

Add &
normalize

network
Ezip1] || E[zipl] || E[zip2] || E[zip3] || E[zip3] W0
+ + + + +
Multi-hgad
Elagel] || E[agel] | E[age2] E[age3] || E[age3] attention
+ + + + +
Positional
encoding
MASK

[ D1, MASK, D3]

visit1l visit2 visit3
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Encoder
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|
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|
|
|
|
|
|
|
|
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Positional ELGE nd zip
encoding embefssli-

MASK FRSNNNS. :

[ D1, MASK, D3] oy

visit1l visit2 visit3



Ped-BERT Pre-training

Puac=1{..,D2,...}

MASK

[ D1, MASK, D3]

visit1l visit2 visit3

Encoder

|
|
|
|
|
|
|
|
|
|
|
6x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Positional
encoding

age JyleiAls)
embele[s[l§f:S




Ped-BERT Pre-training

_ Fully connected
PMASK_{..’DZ'...} ftmax

Encoder \

Is it hard to code the
Encoder block?

v

Multi-head
attention

1

1

1

1

1

| |
Positional ELGE nd zip
encoding embefssli-

MASK RO M :

[ D1, MASK, D3] oy

visit1l visit2 visit3



Ped-BERT Pre-training

Puac=1{..,D2,...}

Elzip1] || Elzip1] || Elzip2] || Elzip3] || Elzip3]
E[ag+e1] E[a;ell E[age2] E[age3] || E[age3]
E[+0] ;1] E[+2] E[+3] E[+4]
E[<+s>] E[+D1] E[MASK] | E[D3] E[<e>]

[ D1, MASK, D3]

visit1l visit2 visit3

Encoder

Positional
encoding

Multi-head
attention

v

encoder_output = embeddings
for i in (config.NUM_LAYERS):

query encoder_output
key = encoder_output
value = encoder_output

attention output = layers.MultiHeadAttention(
num_heads=config.NUM HEAD,
key dim=config.EMBED DIM config.NUM_HEAD,
name="encoder_{}/att".format(i),

)(query, key, value)

attention_output = layers.Dropout(
0.1, name="encoder_{}/att_dropout".format(i))(
attention_output

attention_output = layers.lLayerNormalization(
epsilon=1e-6, name="encoder_{}/att_layernormalization".format(i)
)(query + attention_output)

ffn = keras.Sequential(
[layers.Dense(config.FF_DIM, activation="relu"),
layers.Dense(config.EMBED_DIM)],
name="encoder_{}/ffn".format(i),

)

ffn_output = ffn(attention_output)

ffn_output = layers.Dropout(
config.RATE, name="encoder_ {}/ffn_dropout".format(i))(
ffn_output

sequence_output = layers.layerNormalization(
epsilon=1e-6, name="encoder {}/ffn_layernormalization".format(i)
)(attention_output + ffn_output)

encoder_output sequence_output



Ped-BERT Pre-training

Puac=1{..,D2,...}

Encoder

Multi-head
attention

Positional ELGE nd zip
encoding embefssli-

MASK] || E[D3] || E[<e>] | <« e S

[ D1, MASK, D3] iy

visit1l visit2 visit3

v

mlm_output = layers.Dense
(vectorize layer['diag’'].

=0
s

name="mlm_.
activation

_vocabulary()),

(1[]

'softmax")(encoder_output)



Ped-BERT Pre-training

Did we learn useful embeddings?

Let’s project embeddings in 2D space...
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Ped-BERT Fine-tuning

next medical diagnosis

output layer +
softmax activation

+ update all model
e NN I parameters
+

Pre-trained Ped-BERT

0.51 mil

Birth IDs
with SSN

history of diagnosis codes ——

3.55 mil




Ped-BERT Results

Sample-average ROC AUC curve: 0.911

>
-
>
B
@
=
[
2]
Q
-
©
oc
v
>
E>S
@
o]
a.
[
3
=
=

0.4 0.6
False Positive Rate (1-Specificity)




Ped-BERT Results

>
-
>
B
@
=
[
2]
[
-
©
oc
v
>
E>S
@
o]
a.
[
3
=
=

0.4 0.6
False Positive Rate (1-Specificity)

Top 4 diagnosis predictions by ROC AUC

Disorders Of Thyroid Gland
(AUC =0.980)

Malignant Neoplasm of Genitourinary Organs
(AUC =0.978)

Complications of the Puerperium
(AUC = 0.965)




Ped-BERT Results

Least 4 diagnosis predictions by ROC AUC

Persons With Potential Health Hazards Related to
Personal And Family History (AUC = 0.433)

Zoonotic Bacterial Diseases
(AUC =0.188)

Malignant Neoplasm of Respiratory And Intrathoracic
Organs (AUC = 0.107)
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QUIZ

Q 5: What other model performance questions are important to look at?



Ped-BERT Fairness

mother country at her own birth patient age at visit CA region of baby/patient at birth baby/patient pm25 at birth
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Less stable ROC AUC results across mother place of birth
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Less stable ROC AUC results for older patients




Ped-BERT Fairness

mother country at her own birth patient age at visit CA region of baby/patient at birth baby/patient pm25 at birth
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Ped-BERT Fairness

baby/patient gender

baby/patient race

mother race

mother education
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===: Hisp_Oth (AUC = 0.909)
===: NAm_EA (AUC = 0.905)
===: Wh (AUC = 0.912)
===: unkn (AUC = 0.925)
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Ped-BERT Fairness

mother inp/ER visits 12 months a. birth

mother inp/ER visits 9months b. birth

month prenatal care began

number of prenatal visits
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1st trimester (AUC = 0.912)
=== 2nd trimester (AUC = 0.908)
=== 3rd trimister (AUC = 0.907)

low: 0-7 visits (AUC = 0.905)
+ normal: 8-12 visits (AUC = 0.912)
=== high: 13-20 visits (AUC = 0.912)
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QUIZ

Q 6: Given the data and the results presented, can you think of other areas of exploration?



Ped-BERT Work in Progress

recurrent fevers
progressive fat loss
swollen eyelids

e first seizure
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after 12 (!) hospital visits...

CANDLE syndrome, a rare,
usually genetic,
autoinflammatory condition
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Ped-BERT Work in Progress R —

swollen eyelids
first seizure

&

after 12 (!) hospital visits...

CANDLE syndrome, a rare,
usually genetic,
autoinflammatory condition

80% of rare diseases, usually genetic,
onset during the first years of life

(pediatric patients)




recurrent fevers

Ped-BERT Work in Progress R —

swollen eyelids
first seizure

&

Can we use Ped-BERT to detect rare » after 12 (!) hospital visits...

diseases earlier?

CANDLE syndrome, a rare,
usually genetic,
autoinflammatory condition

80% of rare diseases, usually genetic,
onset during the first years of life

(pediatric patients)




Conclusions

@® Transformers: history and architecture

@® BERT (Transformer-encoder): architecture

@® Application: predict diagnosis outcomes for pediatric patients using Ped-BERT
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