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Abstract

Artificial intelligence (AI)-based diagnosis systems are particularly relevant in pediatrics given

the well-documented impact of early-life health conditions on later-life outcomes. Yet, early

identification of diseases for this age group has so far remained uncharacterized, likely because

access to relevant health data is severely limited. Thanks to a confidential data use agreement

with the California Department of Health Care Access and Information, we are able to develop

Ped-BERT: A state-of-the-art deep learning model that accurately predicts the likelihood of

100+ conditions in a pediatric patient’s next medical visit. We link mother-specific pre- and

postnatal period health information to pediatric patient hospital discharge and emergency room

visits. Our data set comprises 513.9K mother-baby pairs and contains medical diagnosis codes

as well as temporal and spatial pediatric patient characteristics, such as age and residency

zip code at the time of visit. Following the popular bidirectional encoder representations

from the transformers (BERT) approach, we pretrain Ped-BERT via the masked language

modeling objective to learn embedding features for the diagnosis codes contained in our data.

We then continue to fine-tune our model to accurately predict diagnosis outcomes for a pediatric

patient’s next visit, given the history of previous visits and, optionally, the mother’s pre- and

postnatal health information. We achieve an area under the receiver operator curve (ROC

AUC) of 0.923 and an average precision score (APS) of 0.403. Further, we assess the prediction

accuracy of Ped-BERT in identifying a few rare genetic diseases. We also examine its fairness

by determining whether prediction errors are evenly distributed across various subgroups of

mother-baby demographics and health characteristics, or if certain subgroups exhibit a higher

susceptibility to prediction errors.
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Introduction1

Early identification of diseases is vital for better treatment options, longer survival rates, improved2

long-term outcomes, and lower hospital utilization costs. In recent years, breakthrough progress3

in this area was made by leveraging electronic health records (EHR) and advanced deep learning4

(DL) architectures, such as convolutional neural networks (CNN, e.g., Nguyen et al. (Deepr)1),5

recurrent neural networks (RNN, e.g., Choi et al. (Doctor AI)2), long short-term memory networks6

(LSTM, e.g., Pham et al. (DeepCare)3), and an even more powerful architecture called bidirectional7

encoder representation from transformers (BERT). For instance, Li et al.4 introduce BEHRT,8

a BERT-inspired model applied to EHR, capable of predicting the likelihood of more than 3009

conditions in one’s future medical visit; Shang et al.5 propose G-BERT, a model that combines10

the power of graph neural networks (GNN) and BERT for diagnosis prediction and medication11

recommendation; Rasmy et al.6 introduce Med-BERT, also a BERT model, to provide pretrained12

contextualized embeddings run on large-scale structured EHR.13

To the best of our knowledge, most advances in this literature (a) rely on EHR representative14

of the adult population;7,4 (b) need to specify the patient age distribution;1,8, 9, 2, 10,11,6, 5 (c) use15

models that focus on predicting a limited set of health outcomes;3,8 (d) focus on improving disease16

risk assessment performance by accounting only for the timing irregularity between clinical events17

(e.g., age at the time of visit);1,2, 4 (e) do not report prediction performance on rare diseases,12 or18

(f) do not use in-utero health information for diagnosis prediction.1219

However, computer-aided early detection of diseases holds particular significance in the field of20

pediatrics. Timely diagnosis and intervention are crucial for enhancing the long-term well-being of21

children, as highlighted in various studies.13,14,15,12 Consequently, we have developed Ped-BERT,22

an architecture inspired by BERT.16 Our model accurately predicts over 100 potential diagnoses that23

a child might face during their upcoming medical appointment. It could serve as a valuable tool for24

aiding pediatricians in their clinical decision-making processes. Ped-BERT leverages a rich dataset25

encompassing hospital discharge records and emergency room information for pediatrics, including26

the patient’s age and the residential zip code or county at the time of the visit. Additionally, it27
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can optionally integrate maternal health data from both pre- and postnatal periods. To the best28

of our knowledge, our prediction framework, leveraging data that matches mother and baby pairs29

longitudinally is the first of its kind. Furthermore, this dataset empowers us to explore the model’s30

capability to predict rare genetic diseases and to assess its overall fairness, including an examination31

of whether prediction errors are evenly distributed across different demographics of mother-baby32

pairs.33

To summarize, we contribute to the literature as follows: first, we use a novel data set that links34

medical records of mother-baby pairs between 1991-2017 in California; second, we develop Ped-35

BERT, a DL architecture for early detection of diseases in pediatric patients seeking care in inpatient36

or emergency settings; third, we leverage both temporal and spatial patient characteristics, such as37

age and geographical location at the time of visit; fourth, we also report the model’s performance38

in predicting rare genetic diseases, and fifth, we evaluate Ped-BERT’s performance with fairness in39

mind.40

Data41

This study relies on data from the California Department of Health Care Access and Information42

(HCAI17). Through a confidential data use agreement, we access the universe of births between 199143

and 2012 (Birth data), patient discharge data (PDD), and emergency department visits (EDD)44

through 2017 from nearly 7, 000 California licensed healthcare facilities.18 We use this data to45

pre-train and fine-tune Ped-BERT.46

Birth data47

We observe over 12M birth records registered in California, including maternal antepartum and48

postpartum hospital records for the nine months before delivery and one-year post-delivery (Figure49

1a, top panel). We filter the data to retain only mother-baby pairs (birth IDs) for which the50

discharge records link to birth certificate data and the baby’s social security number (SSN), if the51

SSN was assigned either at birth or within their first year of life. After filtering, our birth data52
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includes 763,895 mother-baby pairs whose medical records can be tracked over time by linkage with53

the PDD and EDD data via the SSN (Figure 1b, top panel). Among all variables present in the54

birth data, we retain information on the baby’s gender, race, and residency zip code and county at55

birth. We also include information on the mother’s race and education, the month prenatal care56

began, the number of prenatal visits, and the number of times the mother visited a healthcare57

facility in an emergency or inpatient setting nine months before and twelve months after birth.58

Patient Discharge and Emergency Department Visits59

The PDD and EDD datasets consist of over 59M inpatient discharges between 1991 and 2017 and60

over 81M in emergency visits between 2005 and 2017, respectively (Figure 1a, middle and bottom61

panels). If the emergency encounter resulted in a same-hospital admission, the inpatient record62

reflects the emergency encounter, and no separate emergency department visit is recorded.63

We subset these data to include only those records for which the patient’s SSN has a match in the64

Birth data (Figure 1b, middle and bottom panels). To improve our machine learning task, we further65

filter this data to select only those patients whose medical history includes at least three emergency66

or inpatient stays. After this last filtering, we have nearly 1M inpatient and 2.5M emergency67

discharge records for 513,963 mother-baby pairs. (Figure 1c, middle, bottom, and top panels). From68

the PDD and EDD data, we retain information on patient demographic characteristics (including69

residence zip code and county at the time of visit) and up to three disease codes as listed by the70

healthcare provider during the encounter. The disease codes in our data are classified using the71

9th and 10th revisions of the International Statistical Classification of Diseases and Related Health72

Problems (ICD-9 and ICD-10, respectively). For ease of analysis and interpretability, we convert73

ICD-10 to ICD-9 codes using the AtlasCUMC dataset19,20 and choose to operate at the two-digit74

sub-chapter level.75

Via a random split, we use 70% and 30% of these 513, 963 mother-baby pairs, respectively,76

for fine-tuning Ped-BERT and for assessing prediction performance in the downstream task of77

predicting the next medical diagnosis. In the following, we refer to these two data sets simply as78

‘fine-tuning training set’ and ‘fine-tuning test set’.79
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Ped-BERT Pre-training Data80

For the pre-training of Ped-BERT, it is important to highlight that our goal is to utilize patient81

records without matches in the fine-tuning data but with available SSN information that enables82

us to establish connections across time. This distinction is crucial because the data used for pre-83

training Ped-BERT should not align with our final prediction task to prevent data leakage.84

We begin with the raw dataset comprising over 59M inpatient discharges (PDD data) and over85

81M emergency visits (EDD data) (Figure 1a, middle and bottom panels). From this extensive86

dataset, we retain records of patients with valid SSN. Following this filtering process, we are left87

with nearly 3.8M inpatient stays and 16.2M emergency visits, corresponding to nearly 5.5M patient88

IDs (Figure 1d). Subsequently, we exclude all patients whose SSN match the 513, 963 birth IDs89

described in the previous subsection because we will use this data for fine-tuning Ped-BERT (Figure90

1e). Finally, to improve our machine learning task, we further refine the data to include only patients91

with a minimum of three medical encounters. This step leaves us with approximately 2M inpatient92

discharges and 10M in emergency room visits, totaling 1,855,013 unique patients for pre-training93

Ped-BERT (Figure 1f).94

Via a random split, we use 80% and 20% of these data, respectively, for pre-training Ped-BERT95

and testing prediction performance. In the following, we refer to these two data sets simply as96

‘pre-training training set’ and ‘pre-training test set’.97
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Figure 1: Filtering, linking, and summary of our data. (a-b) From the initial set of 12M
birth IDs, 59.8M patient discharge data records (PDD), and 81.6M emergency department data
records (EDD), we only retain those that can be linked via SSN at birth or in the first year of
life: 764K, 1.4M and 2.5M, respectively. (c) We further filter by number of inpatient/emergency
encounters, only retaining records for patients with at least three medical encounters. This final
set consists of approximately 3.5M hospital visits (PDD and EDD combined) between 1991-2017
for 513, 963 mother-baby pairs. This data is used for fine-tuning Ped-BERT. (d) From the initial
set of 59.8M PDD records and 81.6M EDD records, we only retrain those that can be linked via
SSN at some point in life: 2.9M and 13.6M, respectively. (e-f) We further drop the records of
patients whose SSN has a match in the 513, 963 mother-baby pairs data or have less than three
inpatient/emergency encounters. This final set consists of around 2M and 10M records in the PDD
and EDD data, respectively, corresponding to 1, 855, 013 unique patient IDs. We use this data for
pre-training Ped-BERT.

Patient Medical History98

For our fine-tuning task of predicting diagnosis in the upcoming medical visit, we rely on99

patient health information, starting nine months before birth, until data censoring. Let P100

represent our sample of patients, and T represent a set of sorted time stamps. In our101

data, each patient p ∈ {1, 2, ..., P}, is described by a set of birth attributes, p.Ab =102

{A1, A2, . . . , An} recorded in the prenatal period and/or at the time of birth. Each pa-103

6



tient is also characterized by a set of inpatient/emergency encounter attributes, p.Ae =104

{(A1, A2, . . . , An|1), (A1, A2, . . . , An|2), ..., (A1, A2, . . . , An|T )} recorded at time t ∈ {1, 2, ...T} of105

encounter with the medical provider. The attributes in p.Ab cover the baby’s gender and race,106

mother’s race and education, pregnancy month prenatal care began, the number of prenatal visits,107

mother inpatient/emergency visits nine months before and twelve months after birth, and residency108

zip code/county at birth. Similarly, the attributes in p.Ae are sequences of patient disease codes,109

patient age, and patient residency zip code/county at the time of visit. Figure 2a illustrates, in110

tabular form, the medical history of a hypothetical patient with birth attributes (data column 2)111

p.Ab = {female, hisp, hisp, < high school, 2, 9, 1, 3, 94002} and medical encounter attributes (data112

columns 3-7) p.Ae = { ([D1, D2], 0, 94002 | visit=1), ([D1], 4, 94002 | visit=2), ..., ([D1], 7, 91000113

| visit = 5)}. The diagnosis codes assigned by medical personnel are represented as D1, D2,... etc.114

Descriptive statistics of the data utilized for fine-tuning Ped-BERT are presented in Figure 2.115

The distribution of the baby/patient’s race is approximately even between males and females; both116

the baby/patient’s and mother’s race are predominantly white or Hispanic/other; most mothers117

have attained an educational level below high school or have completed college; prenatal care118

typically starts within 1-3 months of conception, with most mothers receiving 10-12 prenatal care119

visits; a majority of mothers in our data did not require inpatient or emergency room services in120

the prepartum and postpartum period (see Figure 2b for additional details). Lastly, mother-baby121

pairs in our data are well-distributed across California (Figure 2c).122
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Patient medical history in utero/ at birth visit 1 visit 2 visit 3 visit 4 visit 5
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Figure 2: Patient medical history and descriptive statistics. (a) Example, in tabular
form, of a patient’s medical history documenting data collected in the in-utero period or at
the time of birth, and during the first five inpatient/emergency visits. (b-c) Summary statis-
tics for mother-baby/patient demographics and health-related outcomes belonging to the 513, 963
mother-baby pairs used for fine-tuning of Ped-BERT. Abbreviations: F = Female, M = Male,
AS PI = Assian Pacific Islander, Bl = Black, Hisp Oth = Hispanic Other, NAm EA = Native,
Am Eskimo Aleut, Wh = White, <HS = less than High-school, grad = graduate education, b. =
before, a. = after, unkn = unknown.
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Methods123

This study aims to introduce Ped-BERT, a BERT transformer-encoder-based architecture.21,16124

Ped-BERT consists of a bidirectional training procedure and masked language modeling approach125

(MLM), which enable the model to learn the probability distribution of different diagnosis outcomes126

in a pediatric patient’s next inpatient or emergency visit. We describe our methodology below.127

Models128

We decompose our prediction task into two components. In the first step, we pre-train our Ped-129

BERT model using each patient’s health attributes data, p.Ae, and BERT’s MLM approach. The130

objective here is to learn good disease representations. Afterward, via the second step, we fine-tune131

Ped-BERT’s parameters in a supervised fashion via the downstream task of predicting the diagnosis132

in the next medical visit.133

Ped-BERT Pre-training134

The pre-training stage is concerned with learning good disease embeddings. Concretely, Ped-BERT135

pretrains bidirectional diagnosis representations from medical histories by jointly conditioning both136

left and right diseases in a pediatric patient’s medical history. This approach has been shown to137

outperform other deep learning architectures, such as CNN, RNN, and LSTM,1,2, 7, 3 or left-to-right138

attention as presented in the original transformer architecture.21 In addition, Ped-BERT is pre-139

trained using the MLM approach, whose objective is to randomly replace a fraction of the diagnosis140

codes with mask tokens [MASK] and task the model with predicting these hidden disease codes141

instead.142

This stage relies on the unlabeled pre-training data split into ‘pre-training training set’ and143

‘pre-training test set’, and for simplicity, Figure 3a illustrates the pretraining task of Ped-BERT144

using as an example the hypothetical patient introduced earlier (see Figure 2a). First, the model is145

given the patient’s health history in the following format: [CLS] D1 D2 [SEP] D1 [SEP] D1 D2146

[SEP] D1 [SEP] D1 [SEP]. Here, [CLS] is a token denoting the beginning of the patient’s medical147
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history, and the [SEP] token is added to indicate the end of a medical visit. Both tokens, [CLS]148

and [SEP], are added to aid with the subsequent diagnosis prediction task. The D tokens represent149

up to three medical diagnoses at the time of visit (see Figure 3a - Patient Diagnosis History)150

Second, the data undergoes pre-processing for the MLM task, involving the random selection151

of 15 percent of the disease tokens for masking (see Figure 3a - Masking). The selection/masking152

process follows the original BERT model.16153

Third, a trainable input embedding matrix is created. We first identify the unique diagnosis154

codes in the masked training data, map them to integer values, and then encode each patient’s155

diagnosis history using this mapping. Since our disease sequences have different lengths, we use156

zero padding as a placeholder for adjusting sequence length. We continue by encoding information157

on visit position, patient’s age and geographical location to give our model a sense of the timing,158

age, and location of events. While age embeddings have been used before (e.g., BEHRT4), the159

geographical location is unique to Ped-BERT. We hypothesize that one’s location could be an160

essential determinant of health outcomes due to the environmental impacts of the quality of local161

resources, such as clean air and safe water, for example. These resources are prerequisites for162

health, and poor attributes can be particularly detrimental to vulnerable populations such as the163

very young. We pre-train Ped-BERT using the ‘pre-training training set’ with different input164

embedding specifications. We define our baseline specification as the sum of diagnosis and positional165

embeddings. We then assess for any MLM prediction performance improvement by adding age and166

location embeddings (see Figure 3a - Embeddings).167

Finally, the output of the input embeddings sublayer is sent to multi-head attention and feed-168

forward network sublayers (see Figure 3a - transformer-encoder stack). The multi-head attention169

sublayer is followed by post-layer dropout and normalization. The output is passed to the fully170

connected feedforward network sublayer and followed by post-layer normalization. This last layer171

produces the logits for each token in the diagnosis vocabulary. The predicted masked token is172

extracted from these logits using a Softmax activation function, which provides a probability dis-173

tribution over each diagnosis token in the vocabulary (see Figure 3a - MLM Predictions). We keep174

the ‘pre-training test set’ for final model evaluation (see Figure 3a - Evaluation).175
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Ped-BERT Fine-tuning for Diagnosis Prediction176

A complete training procedure of Ped-BERT includes fine-tuning the model for specific downstream177

tasks using labeled data. Our main task in the fine-tuning stage is to predict the probability178

distribution over a set of diagnosis codes in a pediatric patient’s next inpatient or emergency room179

visit. Figure 3b shows the workflow for applying the pre-trained Ped-BERT to this predictive task.180

We start from the labeled fine-tuning data split into ‘fine-tuning training set’ and ‘fine-tuning181

test set’. For each patient p and each data partition, we randomly choose a visit index v (2 ≤182

v < T ) to split their health attributes data, p.Ae into input-output pairs. The input is denoted183

by Xp.Ae = {(Adisease codes, Aage, Azip|1), ..., (Adisease codes, Aage, Azip|v)} and the output by yp.Ae ,184

which is a multi-hot vector of length 105 (corresponding to the total number of disease codes in Ped-185

BERT’s vocabulary) equal to 1 for diagnosis codes that exist in the next visit, Adisease codes|v + 1.186

We tokenize and encode the diagnosis history of each patient, and feed the data into Ped-BERT for187

embeddings extraction (based on the output of the last layer of the transformer-encoder block, see188

Figure 3b - Preprocessing). We then use the ‘fine-tuning training set’ to fine-tune all Ped-BERT’s189

learned parameters by fitting and optimizing a multiclass logistic regression model for subsequent190

diagnosis prediction (see Figure 3b - Learning). We keep the ‘fine-tuning test set’ until the very191

end for the final model evaluation (see Figure 3b - Evaluation).192
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(a) Bidirectional pre-training of Ped-BERT       (b) Fine-tuning for diagnosis prediction
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Masking [CLS] D1 [MASK] [SEP] D1 [SEP] D1 [MASK] [SEP] D1 [SEP] [MASK] [SEP]
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Figure 3: Ped-BERT architecture. (a) The pre-training task is explained using as an example
the hypothetical patient introduced in Figure 2a: Ped-BERT sees the medical history and masks
some of the diagnosis codes before sending them to embedding, multi-head attention, and feed-
forward network sublayers. The task here is to predict the [MASK] disease codes. (b) In the
fine-tuning task, the pre-trained Ped-BERT model parameters are fine-tuned using a logistic model
with the objective of predicting the probability distribution over given diagnosis codes in a pediatric
patient’s next inpatient or emergency room visit. (a-b)The fine-tuning and pre-training steps are
evaluated using the APS and ROC AUC scores.

Prediction Performance Evaluation193

We evaluate the performance of both the pre-trained and fine-tuned Ped-BERT model for disease194

prediction using two key metrics: the Average Precision Score (APS) and the Area Under the195

Receiver Operating Curve (ROC AUC). Note that the APS summarizes a precision-recall curve as196

the weighted mean of precisions achieved at each threshold, with the increase in recall from the197

previous threshold used as the weight (see scikit-learn22 for implementation details).198

During the pre-training phase, we calculate these metrics by comparing the model’s predictions199

to the actual ground-truth data associated with the [MASK] token for all patients within the ”pre-200
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training test set.” In the fine-tuning stage, we represent the model’s predictions for each patient p201

as y∗p.Ae
and gauge the model’s performance by assessing the agreement between these predictions202

(y∗p.Ae
) and the actual values (yp.Ae

). This assessment is conducted by computing the APS and203

ROC AUC on the ”fine-tuning test set” individually for each patient, and subsequently calculating204

the averages across all patients for all diagnosis codes, as well as the averages across all patients for205

each specific diagnosis code.206

Results207

We present results from Ped-BERT’s pre-training stage and then evaluate Ped-BERT’s fine-tuned208

ability to predict the diagnosis in the subsequent medical encounter for all disease codes, and209

separately, for rare genetic conditions. We conclude by discussing the results of a few fairness tasks210

and how Ped-BERT could guide medical practitioners.211

Ped-BERT Pre-training Evaluation212

The optimal architecture of Ped-BERT has the following specifications: the input diagnosis embed-213

ding matrix is of size 120 x 128, with the first dimension representing the length of the diagnosis214

vocabulary (115 unique two-digit diagnosis codes + OOV + [MASK] + [CLS] + [SEP ] + padding215

token) and the second dimension representing the embedding size; the patient history is restricted216

to a maximum length of 40 tokens; the encoder is a stack of 6 identical layers; inside each of these217

identical layers there is a multi-head attention sublayer containing 12 heads and a feedforward net-218

work sublayer containing 128 hidden units; dropout regularization rate is set to 0.1; pre-training is219

for 15 epochs using the Adam optimizer with a learning rate of 3e− 5 and a decay of 0.01.220

Ped-BERT is pre-trained using different specifications for the input embedding matrix. As221

mentioned in the Methods section, we define our baseline embeddings specification as the sum222

of diagnosis embeddings and positional encodings. We then augment this baseline by adding age223

embeddings (+ age), zip embeddings (+ zip), county embeddings (+ cnty), age + zip embeddings224

(+ age + zip), and age + county embeddings (+ age + cnty). Figure 4a presents a couple of225
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interesting findings derived from the ‘pre-training test set’: adding age embeddings slightly improves226

the APS score relative to baseline [0.52 vs. 0.51]; adding county embeddings to the baseline +227

age specification results in negligible APS differences [APS: 0.521 vs. 0.52]; adding additional228

embeddings (such as age and/or county) to the baseline specification results in negligible differences229

in terms of ROC AUC. We also assess specifications with the patient’s zip code instead of the county230

given as additional embeddings and find that the model performance is below the base specification231

in terms of both APS and ROC AUC (results not presented in Figure 4a). In summary, our results232

suggest that, in the context of pediatric patients, augmenting a pre-trained model with information233

on the patient’s age at the time of medical encounter has a modest positive impact on model234

performance, while the addition of patient’s county of residence at the time of the visit does not235

improve the results. For more information on the distributional details regarding the data used to236

pre-train Ped-BERT see Supplementary Figure S1).237

We proceed to evaluate the quality of our pre-trained embeddings through both intrinsic and238

extrinsic methods. Intrinsic assessment involves examining the embeddings’ quality through visual239

inspection and reporting cosine similarity among disease embeddings. For the extrinsic evalua-240

tion, we examine the embeddings’ effectiveness in predicting patient gender distribution for specific241

disease codes.242

To visually inspect Ped-BERT’s embeddings, we reduce the embedding space to 2D using t-SNE243

(see scikit-learn23 for implementation details). Figure 4b shows the reduced embeddings for the244

baseline + age input embeddings specification. The visualization reveals that similar diseases (such245

as those related to injury and poisoning, diseases of the respiratory system, and birth conditions)246

cluster together. Furthermore, diseases known to frequently co-occur (such as neoplasms, diseases247

of the blood, and blood-forming organs) are also grouped closely. Upon closer examination of these248

2D disease embedding clusters, a remarkable association with the International Classification of249

Disease Codes (ICD codes) becomes evident. Notably, this finding is interesting because we did not250

explicitly provide this information to Ped-BERT during the pre-training phase. Subsequently, we251

proceed to report the cosine similarity between disease codes using Ped-BERT’s learned embeddings.252

Upon aggregation at the chapter level, we observe a range of similarity values, with the minimum253
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and maximum values being -0.318 and 1, respectively; the values at the 25, 50, and 95 percentiles,254

are 0.093, 0.229, and 0.586, respectively (additional details are available in supplementary Figure255

S2).256

Finally, we conduct an extrinsic evaluation of Ped-BERT’s embeddings by assessing their perfor-257

mance in predicting the gender distribution of patients with congenital anomalies and tuberculosis.258

This evaluation is prompted by the increasing body of evidence highlighting sex-specific disparities259

in the prevalence of congenital anomalies and tuberculosis, with research studies demonstrating260

higher prevalence rates among pediatric males.24,25 As shown in Supplementary Figure S3, Ped-261

BERT consistently predicts a higher prevalence of these two diseases among males when evaluated262

on the ‘pre-training test set’, with a Fisher’s exact test value equal to 0.0862 (p < 0.1).263

In summary, our current intrinsic and extrinsic evaluation results indicate that Ped-BERT has264

developed a substantial understanding of the contextual relationships between diseases.265
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Figure 4: Evaluation of Ped-BERT’s MLM task. (a) The average precision score (APS, right
y-axis) and the area under the receiver operating curve (ROC AUC, left y-axis) were computed
as sample averages for the following embedding specifications: base (which is the sum of diagnosis
embeddings and positional encodings), base + age, base + county, and base + age + county
embeddings. These metrics represent comparisons between the ground truth (unmasked tokens)
and the MLM-predicted diagnosis (masked tokens) in the test data. (b) Intrinsic evaluation of the
MLM embeddings via visual inspection for the base + age input embeddings specification. We
reduce the dimension of the embedding matrix from 120× 128 to 120× 2 using t-SNE to create a
2D visualization of all 115 two-digit diagnosis codes in our vocabulary. Colors represent diagnosis
chapters.

Ped-BERT Fine-tuning for Diagnosis Prediction266

A complete training procedure of Ped-BERT includes fine-tuning. Ped-BERT is not designed for267

any specific task in the pre-training step but instead trained as a general disease model for pediatric268

patients. In the fine-tuning stage, we generalize Ped-BERT to predict the medical diagnosis in the269

subsequent inpatient or emergency pediatric visit. Specifically, we update the pre-trained model270

parameters for our specific downstream task using regular supervised logistic learning on labeled271

data by adding on top of the pre-trained Ped-BERT a feedforward layer with 64 hidden units and272
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an output layer containing a softmax activation function. The model is trained for 100 epochs using273

the Adam optimizer with a learning rate of 3e − 4 and early stopping. In Figure 5a (black lines),274

we focus on reporting results related to the base embeddings specification and its corresponding275

augmentations with age (+ age) and age + county (+ age + cnty). We find no differences in276

ROC AUC (continous black lines) and very small differences in APS (dashed black lines) across the277

three pre-trained embedding specifications (e.g., APS base: 0.392, base + age: 0.397, base + age278

+ cnty: 0.399). For comparison, BEHRT’s4 performance in the downstream task of predicting the279

subsequent diagnosis codes for the adult population, shows a one-point difference in APS and an280

inisgnificant difference in ROC AUC between the base and base + age embeddings.281

In Figure 5b, we report the ROC AUC for each diagnosis code in our ‘fine-tuning test set’ as282

derived from the base + age embeddings specification; we highlight the top five (blue colors) and the283

least five performances (red colors) in terms of AUC scores. Our results indicate that Ped-BERT284

exhibits high predictive performance for certain conditions, including maternal causes of perinatal285

morbidity and mortality (AUC = 0.983), malignant neoplasm of genitourinary organs (AUC =286

0.950), congenital anomalies (AUC = 0.938), ischemic heart disease (AUC = 0.918), malignant287

neoplasm of bone (AUC = 0.906), and organic psychotic conditions (AUC = 0.901). On the other288

hand, it demonstrates lower prediction performance for conditions like injury of nerves of spinal289

cord (AUC = 0.619), malignant neoplasm of respiratory and intrathoracic organs (AUC = 0.615),290

toxic effects of substances (AUC = 0.614), persons with potential health hazards related to personal291

and family history (AUC = 0.531), and other spirochetal diseases (AUC = 0.410).292

In Figure 5c, our focus centers on assessing the suitability of Ped-BERT for detecting rare293

genetic diseases for pediatric patients. To achieve this, we compute and report the ROC AUC294

scores for various genetic diseases, including other Diseases of the biliary tract (AUC = 0.645),295

other metabolic and immunity disorders (AUC = 0.598), diseases of white blood cells (AUC =296

0.649), cerebral degenerations manifesting in childhood (AUC = 0.656), congenital anomalies of297

eyes (AUC = 0.895), and diseases of the capillaries (AUC = 0.588). These results indicate varying298

levels of prediction performance for these rare diseases, ranging from decent to suboptimal. For299

more details, please refer to Supplementary Table S2, which provides additional information on the300
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number of patients with these rare diseases in both the ‘fine-tuning training set’ and ‘fine-tuning301

test set’.302

The Role of Ped-BERT Pre-training and Birth Attributes Data303

To further explore the efficacy of Ped-BERT’s pre-training and the role of birth attributes data, we304

conduct two additional investigations. First, we compare the performance of a disease prediction305

model using randomly initialized base embeddings against the three models employing pre-trained306

Ped-BERT embeddings. In Figure 5a (black lines), we observe a significant enhancement in APS307

and a modest improvement in ROC AUC performance when comparing the model with randomly308

initialized base embeddings to the one with pre-trained base Ped-BERT embeddings (APS: 0.372309

vs. 0.392, ROC AUC: 0.915 vs. 0.92). Second, we extend the analysis by incorporating birth310

attributes data (p.Ab) into both the randomly initialized and pre-trained Ped-BERT embedding311

models to assess potential improvements in disease prediction. In Figure 5a (maroon lines), notable312

distinctions are only evident for the model with randomly initialized base embeddings (APS: 0.372313

vs. 0.392, ROC AUC: 0.915 vs. 0.922) and the model with pre-trained base Ped-BERT embeddings314

(APS: 0.392 vs. 0.403, ROC AUC: 0.92 vs. 0.926). These results suggest that a pre-trained315

Ped-BERT model with base embeddings is a good subsitute for a model with randomly initialize316

embeddings that also require birth attributes data for better prediction performance.317
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(a) (b) (c)

Figure 5: Evaluation of the Disease Prediction task. We consider the following embedding
specifications: black lines = randomly initialized embeddings (base (random)), pre-trained base
Ped-BERT embeddings, pre-trained base + age Ped-BERT embeddings, and pre-trained base +
age + county Ped-BERT embeddings; maroon lines = augment the four models with features from
the birth attributes data (p.Ab). (a) The APS (right y-axis) and ROC AUC (left y-axis) computed
for each embedding specification scenario outlined above (black lines and maroon lines)). These
metrics represent comparisons between the ground truth and the predicted diagnosis for each patient
in the output partition of the input-output pairs of our test dataset. (b) True Positive Rates and
False Positive Rates curves averaged across all patients for each diagnosis in the data (grey lines),
for the top five (blue lines) and least five (red lines) diagnosis codes based on AUC scores, and
average across all patients for all diagnosis codes in the data (dot-dashed black lines); the long-
dashed line denotes a random classifier. (c) similar to (b) but for selected rare genetic diseases for
top one (blue lines) and least five (red lines).

Fairness Tasks318

We are interested in determining whether next-visit diagnosis prediction errors are uniform across319

subgroups in our data. Figure 5 already gives us some insights into the model’s APS and ROC320

AUC performance (overall and by disease code), but it is desirable to understand how well it321

performs for different subgroups. For example, Figure 2 identifies groups of mother-baby/patient322

demographics and health-related outcomes belonging to the pairs used in this analysis. Our data323

also contains information on the mother’s country of birth, which is rarely available to research324

and unique to our study. As such, in this section, we aim to assess the fine-tuned Ped-BERT’s325
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prediction performance with fairness in mind and use the ‘fine-tuning test set’ and the pre-trained326

baseline + age embeddings for this task.327

We find minimal differences in ROC AUC performance across groups of patient gender and328

race, mother race and education, month prenatal care began, the number of prenatal visits, and the329

number of times the mother visited a healthcare facility overnight or in an emergency setting (see330

Figure 6, top and middle panels). Next, we create bins for the mother’s country at her own birth,331

for similar patient ages, for zip codes/counties belonging to the same geographical region,26 and for332

similar PM 2.5 pollution values at the time of birth.27 We find that Ped-BERT is more susceptible333

to prediction errors depending on the mother country of origin at her own birth, for patients in the334

age subgroups 3-17 and greater than 17 ((AUC: 0.933 and 0.901) than those in the 0-2 subgroup335

(AUC: 0.871), and for patients that have been born in a zip code with unhealthy pollution (AUC:336

0.887) as opposed to moderate or good pollution (AUC: 0.907 and 0.914, respectively)(see Figure337

6, bottom panel).338
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Figure 6: Fairness tasks: Using results from the fine-tuning stage, we compare evaluation re-
sults across different subgroups (e.g., baby/patient gender and race; mother race and education;
month prenatal care began). The evaluation results rely on the fine-tuned model with base + age
embeddings applied to the test sample. True Positive Rates (Sensitivity) vs. False Positive Rates
(1-Specificity) are shown as red dots lines. A long-dashed line denotes a random classifier.
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Model Application339

Our results suggest that Ped-BERT may provide useful information to clinical providers. We340

imagine the approach can be utilized in two ways. First, a medical provider can use the fine-tuned341

Ped-BERT model with base + age embeddings to augment clinical decision-making with machine342

learning. Using our model’s predictions would reduce uncertainty over the most likely conditions.343

The table below provides a prediction example for a patient randomly chosen from our ‘fine-tuning344

test set’. The model is presented with the patient’s previous two-digit ICD9 health history (along345

with age information at the time of visit - not presented here for simplicity). The model outputs346

a probability distribution over all diagnosis codes in Ped-BERT’s fine-tuning vocabulary. Listed347

below are the top five predicted diseases.348

User: Medical provider

Previous two-digit ICD9 health history

------------------------------------

[CLS] 46 78 [SEP] 48 [SEP] 49 48 [SEP] 46 [SEP] 07 [SEP]

TOP five diagnosis predictions at the next medical encounter

------------------------------------------------------------

ICD9 code: 49 48 46 78 38

probability: 0.255 0.160 0.153 0.098 0.033

two-digit ICD9 code descriptions

------------------------------

07: Infectious And Parasitic Diseases

38: Diseases Of The Ear And Mastoid Process

46: Acute Respiratory Infections

48: Pneumonia And Influenza

49: Chronic Obstructive Pulmonary Disease And Allied Conditions

78: Symptoms

A second way that a medical professional could use our approach would be to fine-tune the pre-349

trained Ped-BERT on their own corpus of medical records and make predictions for new patients.350

Discussion351

This research aims to improve the early detection of diseases in pediatric patients using a unique352

healthcare database and the latest developments in bidirectional encoder representations from trans-353
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formers (BERT). The data used in our analysis consists of vital statistics and birth information,354

as well as hospital discharge data and emergency room visits in California between 1991 and 2017355

for 513,963 mother-baby pairs. A BERT-based model called Ped-BERT is trained using a masked356

language model (MLM) approach and is able to accurately predict the likelihood of over 100 condi-357

tions in a child’s next medical visit. The study also evaluates Ped-BERT’s prediction performance358

for rare genetic disorders, and for fairness by assessing whether prediction errors are uniformly359

distributed across different mother-baby demographics and health characteristics subgroups. The360

model has the potential to assist clinical providers in making machine learning-augmented decisions361

about pediatric healthcare.362

The pre-training stage of Ped-BERT involves learning good representations of diseases by testing363

different combinations of input embeddings to represent a patient’s health history. The baseline364

specification is the sum of diagnosis embeddings and positional encodings. Age and zop/county365

embeddings augment this baseline in our performance improvement tests. We find that adding366

age embeddings improves the APS score relative to baseline, and further expanding with county367

embeddings results in negligible APS differences relative to the baseline + age specification. We368

use intrinsic and extrinsic methods to evaluate the embedding quality further. Intrinsically, we find369

that the model has learned to cluster together diseases that belong to the same ICD chapter or370

are known to co-occur. Extrinsically, we find that the disease embeddings generated by Ped-BERT371

correctly predict the male-skewed gender distributions for congenital anomalies and tuberculosis.372

The fine-tuning stage of the Ped-BERT model involves adapting the model for the specific373

downstream task of predicting the diagnosis in the subsequent inpatient or emergency pediatric374

visit. The results averaged across all patients and disease codes show insignificant differences in375

ROC AUC and minor differences in APS across the baseline, baseline + age, and baseline + age376

+ cnty fine-tuned embedding specifications. The ROC AUC sample averages were also computed377

across all patients and (a) each diagnosis code, highlighting the top five and least five performances,378

and (b) six rare genetic diseases.379

Finally, we assess the fine-tuned Ped-BERT for fairness, as models that perform poorly on380

certain subgroups can lead to unequal outcomes and perpetuate biases. In this case, Ped-BERT381
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performs generally well, with some differences based on the mother’s country at her own birth, the382

patient’s age, and patient’s pollution exposure at birth.383

We propose several possible directions for future research based on the architecture and prop-384

erties of Ped-BERT. Its ability to encode diagnosis codes, age, and geographical location into a385

fixed-length vector representation can make it useful for many tasks. For example, one can focus on386

fine-tuning Ped-BERT for early detection of rare genetic pediatric conditions. It is also worth noting387

here that the specific dataset used can significantly impact the model’s performance. For example,388

Ped-BERT was pre-trained on a dataset of medical records from California between 1991-2017, so389

it may not perform as well on tasks that involve other states in the US or other countries. Another390

possibility is increasing the training size for older patients and those living in less environmentally391

friendly areas. The rationale here is that a more diverse training set will expose the model to a392

broader range of ages and geographical locations by making the location embeddings more powerful393

for learning good disease representations while helping the model generalize better to new tasks.394

Availability of Data and Code395

We collected health data from The California Department of Health Care Access and Information396

(HCAI17), which provides confidential patient-level data sets to researchers eligible through the397

Information Practices Act (CA Civil Code Section 1798 et seq.). Note that researchers interested398

in working with this health data should request it directly from HCAI (https://hcai.ca.gov/399

data-and-reports/research-data-request-information/) as it is HIPAA protected, and by400

agreement, we are not allowed to distribute it.401

The geospatial data comes from the Census Bureau and includes 2010 ZCTA shapefiles402

(https://www.census.gov/cgi-bin/geo/shapefiles/index.php?year=2010&layergroup=403

ZIP+Code+Tabulation+Areas_),28 2010 county shapefiles (https://www.census.gov/cgi-bin/404

geo/shapefiles/index.php?year=2010&layergroup=Counties+%28and+equivalent%29),29405

2010 ZCTA to county codes (https://www.census.gov/programs-surveys/geography/406

technical-documentation/records-layout/2010-zcta-record-layout.html),30 ZCTA to407
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zip codes crosswalks (https://github.com/censusreporter/acs-aggregate/blob/master/408

crosswalks/zip_to_zcta/ZIP_ZCTA_README.md),31 as well as the 2020 geographical division of409

California’s 58 counties into ten regions (https://census.ca.gov/regions/).26410

The PM 2.5 pollution data is made available by the Atmospheric Composition Analysis411

Group of the Washington University of St. Luis (https://sites.wustl.edu/acag/datasets/412

historical-pm2-5-across-north-america/).32 It provides information on concentrations of am-413

bient fine particulate matter across North America, which combines data from chemical transport414

modeling, satellite remote sensing, and ground-based monitoring.415

The underlying code for this study is publicly available at https://github.com/corneliailin/416

CA_hospitals_online.417
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Appendices503

A Data Acquisition and Processing504

A.1 Health Data505

Our data is distributed by the California Department of Health Care Access and Information506

(HCAI17). We requested the following files for research purposes:507

Linked Birth Files (Birth data): a research database created to study delivery and birth out-508

comes. It includes maternal antepartum and postpartum hospital records for the nine months before509

delivery and one-year post-delivery. In addition, the linked file contains birth records and all infant510

readmissions occurring within the first year of life. The file contains all infants born in a given year,511

including births that happened in a California hospital that reported to HCAI, births that occurred512

in a California hospital that did not report to HCAI, and births that occurred outside California.513

It includes all infants and mothers, irrespective of whether they were linked to a birth record. The514

linked pairs of birth/delivery records have information associated with a mother/baby pair from515

the baby’s discharge data record, the mother’s discharge data record, and the birth certificate data.516

Linked birth files are available beginning with the 1991 calendar year reporting period (HCAI17).517

The Patient Discharge Dataset (PDD): consists of a record for each inpatient discharge from518

a California-licensed hospital. Licensed hospitals include general acute care, acute psychiatric,519

chemical dependency recovery, and psychiatric health facilities. These datasets are available starting520

in 1983 (HCAI17). For more information on the data and reporting requirements, see the California521

Inpatient Data Reporting Manual.33522

The Emergency Department Dataset (EDD): includes information from hospitals licensed to523

provide emergency medical services. The EDD encounters include those patients who had face-524

to-face contact with the provider. If the patient left without being seen, the patient would not525

have had a face-to-face encounter with a provider, and therefore the EDD encounter would not be526

reported. These data sets are available beginning January 2005 (HCAI17).527
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Our study’s primary variable of interest is the primary, secondary, and tertiary ICD 9 or ICD10528

diagnosis codes at the time of visits. We accessed it along with other relevant metadata, such as529

mother-baby demographics and mother health-related outcomes nine months before and 12 months530

after birth.531

A.2 Geospatial Data532

The geospatial data was constructed and made available by the Census Bureau. For California,533

the relevant 2010 ZCTA and county-specific shapefiles,28,29 the 2010 ZCTA to county codes,30 and534

the ZCTA to ZIP crosswalks31 were identified and mapped to our health data for visualization and535

analysis purposes. For the Fairness analysis, we extracted the California - Census 2020 geographical536

division of counties into regions. Table S1 contains a summary of the counties used for each region.537

Table S1: Geographical division of California’s counties - Details of counties included in each
California region to support the Fairness analysis presented in Figure 6.

Region County

Central Coast Monterey, San Benito, San Luis Obispo, Santa Barbara, Santa Cruz, Ventura

Inland Empire Riverside, San Bernardino

Los Angeles County Los Angeles

North Coast Del Norte, Humboldt, Lake, Mendocino, Napa, Sonoma, Trinity

Orange County Orange

SF Bay Area Alameda, Contra Costa, Marin, San Francisco, San Mateo, Santa Clara, Solano

San Diego - Imperial Imperial, San Diego

San Joaquin Valley Alpine, Amador, Calaveras, Madera, Mariposa, Merced, Mono, San Joaquin, Stanislaus, Tuolumne, Fresno, Inyo, Kern, Kings, Tulare

Superior Cali Butte, Colusa, El Dorado, Glenn, Lassen, Modoc, Nevada, Placer, Plumas, Sacramento, Shasta, Sierra, Siskiyou, Sutter, Tehama, Yolo, Yuba

A.3 PM2.5 Pollution Data538

PM2.5 pollution data comes from the Atmospheric Composition Analysis Group32 of the Washing-539

ton University of St. Luis. According to the source, this data is the estimated concentrations of540

ambient fine particulate matter across North America, which combines information from chemical541

transport modeling, satellite remote sensing, and ground-based monitoring. The estimates included542

information from updated historical emissions inventories and meteorological data, fine resolution543

satellite-based estimates of PM2.5, and ground-based measurements of PM2.5, PM10, and total sus-544
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pended particles (TSP) measurements. We extracted information at the monthly level for each zip545

code in our data to construct groups according to the EPA definition for healthy (0.0–12.0µg/m3),546

moderate (12.1–35µg/m3), and unhealthy (> 35µg/m3) PM2.5 pollution exposure at birth.547

B Supplementary Figures548
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Figure S1: Summary statistics of encoded input for pre-training Ped-BERT. The x-axis
represents the length of a given patient history, which we optimally set to 40 periods. Each tick on
the y-axis represents a diagnosis, age, location history, and padding summary for a given patient
ID in the pre-training data. Heatmap values and colors represent: for (a-c), the encoded disease
codes, age, and location history; for (b): the effect of zero padding since not all patients have a
history length equal to 40.
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Figure S2: Intrinsic evaluation of embeddings. Learned embeddings are extracted from the
pre-training stage for the base + age input embedding specification. The heatmap represents the
cosine similarity for all the diagnosis codes in our data aggregated at the chapter level. Negative
values (blue shades) reflect opposite similarities, and positive values (red shades) represent close
similarities.
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Figure S3: Extrinsic evaluation of embeddings. Assess the performance of the pre-trained Ped-
BERT model in predicting the patient gender distribution for congenital anomalies (light gray) and
tuberculosis (dark gray). The results presented here rely on the base + age embeddings specification
using the ‘pre-training test set’. Abbreviations: F = Female, M = Male.
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Table S2: Rare Genetic Diseases Prediction. Number of patients in the ‘fine-tuning training
set’ and ‘fine-tuning test set’ for selected rare genetic diseases at the two-digit ICD9 code level.

two-digit ICD9 diag code # of patients in training data # of patients in test data

27 3620 1541
28 1186 480
33 447 183
44 178 82
57 799 333
74 3816 1641
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